結果

問題 No.1857 Gacha Addiction
ユーザー MitarushiMitarushi
提出日時 2021-12-31 22:13:29
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 4,228 ms / 6,000 ms
コード長 2,652 bytes
コンパイル時間 200 ms
コンパイル使用メモリ 82,156 KB
実行使用メモリ 267,828 KB
最終ジャッジ日時 2024-07-01 21:55:46
合計ジャッジ時間 129,305 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 46 ms
54,272 KB
testcase_01 AC 48 ms
54,016 KB
testcase_02 AC 49 ms
54,016 KB
testcase_03 AC 46 ms
54,016 KB
testcase_04 AC 208 ms
80,176 KB
testcase_05 AC 211 ms
80,172 KB
testcase_06 AC 210 ms
79,620 KB
testcase_07 AC 215 ms
80,060 KB
testcase_08 AC 210 ms
80,080 KB
testcase_09 AC 1,370 ms
157,348 KB
testcase_10 AC 1,347 ms
156,996 KB
testcase_11 AC 1,372 ms
157,376 KB
testcase_12 AC 1,354 ms
157,220 KB
testcase_13 AC 1,347 ms
157,272 KB
testcase_14 AC 4,188 ms
266,484 KB
testcase_15 AC 4,190 ms
266,056 KB
testcase_16 AC 4,174 ms
266,820 KB
testcase_17 AC 4,188 ms
267,828 KB
testcase_18 AC 4,195 ms
264,860 KB
testcase_19 AC 4,189 ms
263,016 KB
testcase_20 AC 4,183 ms
262,656 KB
testcase_21 AC 4,188 ms
262,752 KB
testcase_22 AC 4,189 ms
263,004 KB
testcase_23 AC 4,201 ms
262,756 KB
testcase_24 AC 4,191 ms
262,996 KB
testcase_25 AC 4,177 ms
263,052 KB
testcase_26 AC 4,228 ms
263,112 KB
testcase_27 AC 4,177 ms
262,960 KB
testcase_28 AC 4,183 ms
262,988 KB
testcase_29 AC 4,190 ms
262,844 KB
testcase_30 AC 4,183 ms
262,564 KB
testcase_31 AC 4,190 ms
262,908 KB
testcase_32 AC 4,180 ms
262,956 KB
testcase_33 AC 4,199 ms
262,848 KB
testcase_34 AC 4,185 ms
262,968 KB
testcase_35 AC 4,192 ms
262,768 KB
testcase_36 AC 4,178 ms
262,764 KB
testcase_37 AC 4,181 ms
263,436 KB
testcase_38 AC 4,191 ms
262,812 KB
testcase_39 AC 1,557 ms
167,324 KB
testcase_40 AC 1,681 ms
179,660 KB
testcase_41 AC 2,016 ms
205,064 KB
testcase_42 AC 534 ms
102,588 KB
testcase_43 AC 3,825 ms
264,540 KB
testcase_44 AC 4,168 ms
266,768 KB
testcase_45 AC 44 ms
55,672 KB
testcase_46 AC 44 ms
54,932 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

import collections

mod = 998244353


def fft_inplace(a, w):
    n = len(a)
    m = n
    t = 1
    while m >= 2:
        mh = m >> 1
        for i in range(0, n, m):
            for s in range(mh):
                j, k = i+s, i+mh+s
                a[j], a[k] = (a[j]+a[k]) % mod, (a[j]-a[k])*w[s*t] % mod
        m = mh
        t *= 2


def ifft_inplace(a, w):
    n = len(a)
    m = 2
    t = -(n >> 1)
    while m <= n:
        mh = m >> 1
        for i in range(0, n, m):
            for s in range(mh):
                j, k = i+s, i+mh+s
                a[k] *= w[s*t]
                a[j], a[k] = (a[j]+a[k]) % mod, (a[j]-a[k]) % mod
        m <<= 1
        t //= 2
    n_inv = pow(n, mod-2, mod)
    for i in range(n):
        a[i] = a[i] * n_inv % mod


def normal_convolution(a, b):
    n = max(len(a) + len(b) - 1, 1)
    c = [0] * n
    for i in range(len(a)):
        for j in range(len(b)):
            c[i+j] += a[i] * b[j]

    for i in range(n):
        c[i] %= mod
    return c


def convolution(a, b):
    n2 = max(len(a) + len(b), 1)

    if len(a) * len(b) < 1 << 6:
        return normal_convolution(a, b)

    n = 1 << (n2-1).bit_length()
    a = a + [0] * (n-len(a))
    b = b + [0] * (n-len(b))

    w_root = pow(3, (mod-1)//n, mod)
    w = [1] * n
    for i in range(1, n):
        w[i] = w[i-1] * w_root % mod

    fft_inplace(a, w)
    fft_inplace(b, w)
    c = [i*j % mod for i, j in zip(a, b)]
    ifft_inplace(c, w)
    return c[:n2]


class Poly:
    def __init__(Self, coeffs):
        Self.coeffs = coeffs

    def __add__(Self, other):
        n = max(len(Self.coeffs), len(other.coeffs))
        result = [0] * n
        for idx, i in enumerate(Self.coeffs):
            result[idx] += i
        for idx, i in enumerate(other.coeffs):
            result[idx] += i
            result[idx] %= mod
        return Poly(result)

    def __mul__(Self, other):
        return Poly(convolution(Self.coeffs, other.coeffs))


class Fraction:
    def __init__(Self, num, den):
        Self.num = num
        Self.den = den

    def __add__(Self, other):
        return Fraction(Self.num * other.den + Self.den * other.num, Self.den * other.den)


n, s = map(int, input().split())
s_inv = pow(s, mod-2, mod)
p = [i * s_inv % mod for i in map(int, input().split())]

fractions = collections.deque(
    Fraction(Poly([0, i ** 2 % mod]), Poly([1, i])) for i in p
)

while len(fractions) > 1:
    fractions.append(fractions.popleft() + fractions.popleft())

ans = 0
factorial = 2
for i in range(1, n + 1):
    ans += fractions[0].num.coeffs[i] * factorial % mod
    factorial = factorial * (i + 2) % mod
    ans %= mod

print(ans)

0