結果
問題 | No.1857 Gacha Addiction |
ユーザー | Mitarushi |
提出日時 | 2021-12-31 22:13:29 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 4,228 ms / 6,000 ms |
コード長 | 2,652 bytes |
コンパイル時間 | 200 ms |
コンパイル使用メモリ | 82,156 KB |
実行使用メモリ | 267,828 KB |
最終ジャッジ日時 | 2024-07-01 21:55:46 |
合計ジャッジ時間 | 129,305 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 46 ms
54,272 KB |
testcase_01 | AC | 48 ms
54,016 KB |
testcase_02 | AC | 49 ms
54,016 KB |
testcase_03 | AC | 46 ms
54,016 KB |
testcase_04 | AC | 208 ms
80,176 KB |
testcase_05 | AC | 211 ms
80,172 KB |
testcase_06 | AC | 210 ms
79,620 KB |
testcase_07 | AC | 215 ms
80,060 KB |
testcase_08 | AC | 210 ms
80,080 KB |
testcase_09 | AC | 1,370 ms
157,348 KB |
testcase_10 | AC | 1,347 ms
156,996 KB |
testcase_11 | AC | 1,372 ms
157,376 KB |
testcase_12 | AC | 1,354 ms
157,220 KB |
testcase_13 | AC | 1,347 ms
157,272 KB |
testcase_14 | AC | 4,188 ms
266,484 KB |
testcase_15 | AC | 4,190 ms
266,056 KB |
testcase_16 | AC | 4,174 ms
266,820 KB |
testcase_17 | AC | 4,188 ms
267,828 KB |
testcase_18 | AC | 4,195 ms
264,860 KB |
testcase_19 | AC | 4,189 ms
263,016 KB |
testcase_20 | AC | 4,183 ms
262,656 KB |
testcase_21 | AC | 4,188 ms
262,752 KB |
testcase_22 | AC | 4,189 ms
263,004 KB |
testcase_23 | AC | 4,201 ms
262,756 KB |
testcase_24 | AC | 4,191 ms
262,996 KB |
testcase_25 | AC | 4,177 ms
263,052 KB |
testcase_26 | AC | 4,228 ms
263,112 KB |
testcase_27 | AC | 4,177 ms
262,960 KB |
testcase_28 | AC | 4,183 ms
262,988 KB |
testcase_29 | AC | 4,190 ms
262,844 KB |
testcase_30 | AC | 4,183 ms
262,564 KB |
testcase_31 | AC | 4,190 ms
262,908 KB |
testcase_32 | AC | 4,180 ms
262,956 KB |
testcase_33 | AC | 4,199 ms
262,848 KB |
testcase_34 | AC | 4,185 ms
262,968 KB |
testcase_35 | AC | 4,192 ms
262,768 KB |
testcase_36 | AC | 4,178 ms
262,764 KB |
testcase_37 | AC | 4,181 ms
263,436 KB |
testcase_38 | AC | 4,191 ms
262,812 KB |
testcase_39 | AC | 1,557 ms
167,324 KB |
testcase_40 | AC | 1,681 ms
179,660 KB |
testcase_41 | AC | 2,016 ms
205,064 KB |
testcase_42 | AC | 534 ms
102,588 KB |
testcase_43 | AC | 3,825 ms
264,540 KB |
testcase_44 | AC | 4,168 ms
266,768 KB |
testcase_45 | AC | 44 ms
55,672 KB |
testcase_46 | AC | 44 ms
54,932 KB |
ソースコード
import collections mod = 998244353 def fft_inplace(a, w): n = len(a) m = n t = 1 while m >= 2: mh = m >> 1 for i in range(0, n, m): for s in range(mh): j, k = i+s, i+mh+s a[j], a[k] = (a[j]+a[k]) % mod, (a[j]-a[k])*w[s*t] % mod m = mh t *= 2 def ifft_inplace(a, w): n = len(a) m = 2 t = -(n >> 1) while m <= n: mh = m >> 1 for i in range(0, n, m): for s in range(mh): j, k = i+s, i+mh+s a[k] *= w[s*t] a[j], a[k] = (a[j]+a[k]) % mod, (a[j]-a[k]) % mod m <<= 1 t //= 2 n_inv = pow(n, mod-2, mod) for i in range(n): a[i] = a[i] * n_inv % mod def normal_convolution(a, b): n = max(len(a) + len(b) - 1, 1) c = [0] * n for i in range(len(a)): for j in range(len(b)): c[i+j] += a[i] * b[j] for i in range(n): c[i] %= mod return c def convolution(a, b): n2 = max(len(a) + len(b), 1) if len(a) * len(b) < 1 << 6: return normal_convolution(a, b) n = 1 << (n2-1).bit_length() a = a + [0] * (n-len(a)) b = b + [0] * (n-len(b)) w_root = pow(3, (mod-1)//n, mod) w = [1] * n for i in range(1, n): w[i] = w[i-1] * w_root % mod fft_inplace(a, w) fft_inplace(b, w) c = [i*j % mod for i, j in zip(a, b)] ifft_inplace(c, w) return c[:n2] class Poly: def __init__(Self, coeffs): Self.coeffs = coeffs def __add__(Self, other): n = max(len(Self.coeffs), len(other.coeffs)) result = [0] * n for idx, i in enumerate(Self.coeffs): result[idx] += i for idx, i in enumerate(other.coeffs): result[idx] += i result[idx] %= mod return Poly(result) def __mul__(Self, other): return Poly(convolution(Self.coeffs, other.coeffs)) class Fraction: def __init__(Self, num, den): Self.num = num Self.den = den def __add__(Self, other): return Fraction(Self.num * other.den + Self.den * other.num, Self.den * other.den) n, s = map(int, input().split()) s_inv = pow(s, mod-2, mod) p = [i * s_inv % mod for i in map(int, input().split())] fractions = collections.deque( Fraction(Poly([0, i ** 2 % mod]), Poly([1, i])) for i in p ) while len(fractions) > 1: fractions.append(fractions.popleft() + fractions.popleft()) ans = 0 factorial = 2 for i in range(1, n + 1): ans += fractions[0].num.coeffs[i] * factorial % mod factorial = factorial * (i + 2) % mod ans %= mod print(ans)