結果

問題 No.1857 Gacha Addiction
ユーザー MitarushiMitarushi
提出日時 2021-12-31 22:51:07
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 4,371 ms / 6,000 ms
コード長 2,354 bytes
コンパイル時間 166 ms
コンパイル使用メモリ 82,388 KB
実行使用メモリ 292,392 KB
最終ジャッジ日時 2024-07-01 21:59:28
合計ジャッジ時間 133,295 ms
ジャッジサーバーID
(参考情報)
judge3 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 50 ms
54,848 KB
testcase_01 AC 45 ms
54,228 KB
testcase_02 AC 45 ms
55,720 KB
testcase_03 AC 47 ms
55,228 KB
testcase_04 AC 202 ms
80,236 KB
testcase_05 AC 191 ms
79,728 KB
testcase_06 AC 185 ms
79,732 KB
testcase_07 AC 186 ms
80,388 KB
testcase_08 AC 186 ms
79,856 KB
testcase_09 AC 1,385 ms
210,412 KB
testcase_10 AC 1,388 ms
208,096 KB
testcase_11 AC 1,383 ms
210,256 KB
testcase_12 AC 1,369 ms
210,888 KB
testcase_13 AC 1,369 ms
210,036 KB
testcase_14 AC 4,277 ms
284,256 KB
testcase_15 AC 4,315 ms
285,744 KB
testcase_16 AC 4,347 ms
284,220 KB
testcase_17 AC 4,287 ms
281,736 KB
testcase_18 AC 4,326 ms
285,944 KB
testcase_19 AC 4,290 ms
284,052 KB
testcase_20 AC 4,295 ms
284,488 KB
testcase_21 AC 4,338 ms
283,220 KB
testcase_22 AC 4,312 ms
285,152 KB
testcase_23 AC 4,308 ms
284,616 KB
testcase_24 AC 4,310 ms
283,516 KB
testcase_25 AC 4,368 ms
282,064 KB
testcase_26 AC 4,371 ms
281,356 KB
testcase_27 AC 4,346 ms
284,624 KB
testcase_28 AC 4,335 ms
282,696 KB
testcase_29 AC 4,355 ms
284,564 KB
testcase_30 AC 4,339 ms
281,924 KB
testcase_31 AC 4,329 ms
284,052 KB
testcase_32 AC 4,354 ms
284,360 KB
testcase_33 AC 4,354 ms
283,168 KB
testcase_34 AC 4,320 ms
282,124 KB
testcase_35 AC 4,338 ms
284,356 KB
testcase_36 AC 4,309 ms
281,364 KB
testcase_37 AC 4,294 ms
280,796 KB
testcase_38 AC 4,295 ms
284,472 KB
testcase_39 AC 1,527 ms
221,332 KB
testcase_40 AC 1,621 ms
231,968 KB
testcase_41 AC 2,100 ms
264,576 KB
testcase_42 AC 551 ms
122,872 KB
testcase_43 AC 3,972 ms
292,392 KB
testcase_44 AC 4,266 ms
284,496 KB
testcase_45 AC 43 ms
54,704 KB
testcase_46 AC 42 ms
54,520 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

import collections

mod = 998244353


def fft_inplace(a, w):
    n = len(a)
    m = n
    t = 1
    while m >= 2:
        mh = m >> 1
        for i in range(0, n, m):
            for s in range(mh):
                j, k = i+s, i+mh+s
                a[j], a[k] = (a[j]+a[k]) % mod, (a[j]-a[k])*w[s*t] % mod
        m = mh
        t <<= 1


def ifft_inplace(a, w):
    n = len(a)
    m = 2
    t = -(n >> 1)
    while m <= n:
        mh = m >> 1
        for i in range(0, n, m):
            for s in range(mh):
                j, k = i+s, i+mh+s
                a[k] *= w[s*t]
                a[j], a[k] = (a[j]+a[k]) % mod, (a[j]-a[k]) % mod
        m <<= 1
        t //= 2
    n_inv = pow(n, mod-2, mod)
    for i in range(n):
        a[i] = a[i] * n_inv % mod


def zero_pad(a, n):
    a.extend([0] * (n - len(a)))


def zero_remove(a, n):
    for _ in range(len(a) - n):
        a.pop()

class Fraction:
    def __init__(self, num, den):
        self.num = num
        self.den = den

    def __add__(self, other):
        a_num = self.num
        a_den = self.den
        b_num = other.num
        b_den = other.den

        n2 = max(len(a_num) + len(b_num) - 1, 1)
        n = 1 << (n2-1).bit_length()
        zero_pad(a_num, n)
        zero_pad(a_den, n)
        zero_pad(b_num, n)
        zero_pad(b_den, n)

        w_root = pow(3, (mod-1)//n, mod)
        w = [1] * n
        for i in range(1, n):
            w[i] = w[i-1] * w_root % mod
        
        fft_inplace(a_num, w)
        fft_inplace(a_den, w)
        fft_inplace(b_num, w)
        fft_inplace(b_den, w)

        c_num = [(a * d + b * c) % mod for a, b, c, d in zip(a_num, a_den, b_num, b_den)]
        c_dem = [a * b % mod for a, b in zip(a_den, b_den)]

        ifft_inplace(c_num, w)
        ifft_inplace(c_dem, w)

        zero_remove(c_num, n)
        zero_remove(c_dem, n)

        return Fraction(c_num, c_dem)


n, s = map(int, input().split())
s_inv = pow(s, mod-2, mod)
p = [i * s_inv % mod for i in map(int, input().split())]

fractions = collections.deque(
    Fraction([0, i ** 2 % mod], [1, i]) for i in p
)

while len(fractions) > 1:
    fractions.append(fractions.popleft() + fractions.popleft())

ans = 0
factorial = 2
for i in range(1, n + 1):
    ans += fractions[0].num[i] * factorial % mod
    factorial = factorial * (i + 2) % mod
    ans %= mod

print(ans)

0