結果
問題 |
No.1857 Gacha Addiction
|
ユーザー |
|
提出日時 | 2021-12-31 22:51:07 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 4,371 ms / 6,000 ms |
コード長 | 2,354 bytes |
コンパイル時間 | 166 ms |
コンパイル使用メモリ | 82,388 KB |
実行使用メモリ | 292,392 KB |
最終ジャッジ日時 | 2024-07-01 21:59:28 |
合計ジャッジ時間 | 133,295 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 4 |
other | AC * 43 |
ソースコード
import collections mod = 998244353 def fft_inplace(a, w): n = len(a) m = n t = 1 while m >= 2: mh = m >> 1 for i in range(0, n, m): for s in range(mh): j, k = i+s, i+mh+s a[j], a[k] = (a[j]+a[k]) % mod, (a[j]-a[k])*w[s*t] % mod m = mh t <<= 1 def ifft_inplace(a, w): n = len(a) m = 2 t = -(n >> 1) while m <= n: mh = m >> 1 for i in range(0, n, m): for s in range(mh): j, k = i+s, i+mh+s a[k] *= w[s*t] a[j], a[k] = (a[j]+a[k]) % mod, (a[j]-a[k]) % mod m <<= 1 t //= 2 n_inv = pow(n, mod-2, mod) for i in range(n): a[i] = a[i] * n_inv % mod def zero_pad(a, n): a.extend([0] * (n - len(a))) def zero_remove(a, n): for _ in range(len(a) - n): a.pop() class Fraction: def __init__(self, num, den): self.num = num self.den = den def __add__(self, other): a_num = self.num a_den = self.den b_num = other.num b_den = other.den n2 = max(len(a_num) + len(b_num) - 1, 1) n = 1 << (n2-1).bit_length() zero_pad(a_num, n) zero_pad(a_den, n) zero_pad(b_num, n) zero_pad(b_den, n) w_root = pow(3, (mod-1)//n, mod) w = [1] * n for i in range(1, n): w[i] = w[i-1] * w_root % mod fft_inplace(a_num, w) fft_inplace(a_den, w) fft_inplace(b_num, w) fft_inplace(b_den, w) c_num = [(a * d + b * c) % mod for a, b, c, d in zip(a_num, a_den, b_num, b_den)] c_dem = [a * b % mod for a, b in zip(a_den, b_den)] ifft_inplace(c_num, w) ifft_inplace(c_dem, w) zero_remove(c_num, n) zero_remove(c_dem, n) return Fraction(c_num, c_dem) n, s = map(int, input().split()) s_inv = pow(s, mod-2, mod) p = [i * s_inv % mod for i in map(int, input().split())] fractions = collections.deque( Fraction([0, i ** 2 % mod], [1, i]) for i in p ) while len(fractions) > 1: fractions.append(fractions.popleft() + fractions.popleft()) ans = 0 factorial = 2 for i in range(1, n + 1): ans += fractions[0].num[i] * factorial % mod factorial = factorial * (i + 2) % mod ans %= mod print(ans)