結果
問題 | No.1857 Gacha Addiction |
ユーザー | Mitarushi |
提出日時 | 2021-12-31 22:57:51 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 5,456 ms / 6,000 ms |
コード長 | 3,102 bytes |
コンパイル時間 | 204 ms |
コンパイル使用メモリ | 82,048 KB |
実行使用メモリ | 282,836 KB |
最終ジャッジ日時 | 2024-07-01 21:53:05 |
合計ジャッジ時間 | 127,020 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 49 ms
54,272 KB |
testcase_01 | AC | 45 ms
54,400 KB |
testcase_02 | AC | 44 ms
54,784 KB |
testcase_03 | AC | 44 ms
54,144 KB |
testcase_04 | AC | 181 ms
79,000 KB |
testcase_05 | AC | 190 ms
78,844 KB |
testcase_06 | AC | 187 ms
78,752 KB |
testcase_07 | AC | 185 ms
79,236 KB |
testcase_08 | AC | 182 ms
78,996 KB |
testcase_09 | AC | 1,231 ms
180,920 KB |
testcase_10 | AC | 1,228 ms
180,708 KB |
testcase_11 | AC | 1,609 ms
175,396 KB |
testcase_12 | AC | 1,224 ms
180,720 KB |
testcase_13 | AC | 1,222 ms
180,636 KB |
testcase_14 | AC | 3,860 ms
272,956 KB |
testcase_15 | AC | 3,854 ms
275,352 KB |
testcase_16 | AC | 3,807 ms
273,080 KB |
testcase_17 | AC | 3,802 ms
275,880 KB |
testcase_18 | AC | 3,826 ms
275,908 KB |
testcase_19 | AC | 3,899 ms
271,164 KB |
testcase_20 | AC | 5,427 ms
272,148 KB |
testcase_21 | AC | 5,431 ms
277,196 KB |
testcase_22 | AC | 5,387 ms
279,420 KB |
testcase_23 | AC | 3,898 ms
280,464 KB |
testcase_24 | AC | 3,868 ms
282,836 KB |
testcase_25 | AC | 3,856 ms
281,804 KB |
testcase_26 | AC | 3,919 ms
276,744 KB |
testcase_27 | AC | 3,908 ms
278,848 KB |
testcase_28 | AC | 3,868 ms
279,140 KB |
testcase_29 | AC | 3,826 ms
277,468 KB |
testcase_30 | AC | 5,368 ms
273,816 KB |
testcase_31 | AC | 3,859 ms
276,580 KB |
testcase_32 | AC | 3,877 ms
279,900 KB |
testcase_33 | AC | 3,931 ms
274,032 KB |
testcase_34 | AC | 5,456 ms
270,660 KB |
testcase_35 | AC | 3,896 ms
277,088 KB |
testcase_36 | AC | 3,911 ms
273,996 KB |
testcase_37 | AC | 3,857 ms
281,440 KB |
testcase_38 | AC | 3,850 ms
279,024 KB |
testcase_39 | AC | 1,250 ms
186,128 KB |
testcase_40 | AC | 1,869 ms
200,420 KB |
testcase_41 | AC | 1,758 ms
239,092 KB |
testcase_42 | AC | 484 ms
111,032 KB |
testcase_43 | AC | 3,438 ms
260,960 KB |
testcase_44 | AC | 3,717 ms
267,660 KB |
testcase_45 | AC | 45 ms
54,528 KB |
testcase_46 | AC | 45 ms
54,656 KB |
ソースコード
import collections mod = 998244353 def fft_inplace(a, w): n = len(a) m = n t = 1 while m >= 2: mh = m >> 1 for i in range(0, n, m): for s in range(mh): j, k = i+s, i+mh+s a[j], a[k] = (a[j]+a[k]) % mod, (a[j]-a[k])*w[s*t] % mod m = mh t <<= 1 def ifft_inplace(a, w): n = len(a) m = 2 t = -(n >> 1) while m <= n: mh = m >> 1 for i in range(0, n, m): for s in range(mh): j, k = i+s, i+mh+s a[k] *= w[s*t] a[j], a[k] = (a[j]+a[k]) % mod, (a[j]-a[k]) % mod m <<= 1 t //= 2 n_inv = pow(n, mod-2, mod) for i in range(n): a[i] = a[i] * n_inv % mod def zero_pad(a, n): a.extend([0] * (n - len(a))) def zero_remove(a, n): for _ in range(len(a) - n): a.pop() def normal_convolution(a, b): n = max(len(a) + len(b) - 1, 1) c = [0] * n for idx1, i in enumerate(a): for idx2, j in enumerate(b): c[idx1 + idx2] += i * j return c def normal_convolution_mod(a, b): n = max(len(a) + len(b) - 1, 1) c = [0] * n for idx1, i in enumerate(a): for idx2, j in enumerate(b): c[idx1 + idx2] += i * j for i in range(n): c[i] %= mod return c class Fraction: def __init__(self, num, den): self.num = num self.den = den def __add__(self, other): a_num = self.num a_den = self.den b_num = other.num b_den = other.den n2 = max(len(a_num) + len(b_num) - 1, 1) if n2 < 128: c_num = [(i + j ) % mod for i,j in zip(normal_convolution(a_num, b_den), normal_convolution(b_num, a_den))] c_den = normal_convolution_mod(a_den, b_den) else: n = 1 << (n2-1).bit_length() zero_pad(a_num, n) zero_pad(a_den, n) zero_pad(b_num, n) zero_pad(b_den, n) w_root = pow(3, (mod-1)//n, mod) w = [1] * n for i in range(1, n): w[i] = w[i-1] * w_root % mod fft_inplace(a_num, w) fft_inplace(a_den, w) fft_inplace(b_num, w) fft_inplace(b_den, w) c_num = [(a * d + b * c) % mod for a, b, c, d in zip(a_num, a_den, b_num, b_den)] c_den = [a * b % mod for a, b in zip(a_den, b_den)] ifft_inplace(c_num, w) ifft_inplace(c_den, w) zero_remove(c_num, n) zero_remove(c_den, n) return Fraction(c_num, c_den) n, s = map(int, input().split()) s_inv = pow(s, mod-2, mod) p = [i * s_inv % mod for i in map(int, input().split())] fractions = collections.deque( Fraction([0, i ** 2 % mod], [1, i]) for i in p ) while len(fractions) > 1: fractions.append(fractions.popleft() + fractions.popleft()) ans = 0 factorial = 2 for i in range(1, n + 1): ans += fractions[0].num[i] * factorial % mod factorial = factorial * (i + 2) % mod ans %= mod print(ans)