結果
問題 | No.1857 Gacha Addiction |
ユーザー | Mitarushi |
提出日時 | 2021-12-31 22:58:49 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 5,181 ms / 6,000 ms |
コード長 | 3,101 bytes |
コンパイル時間 | 168 ms |
コンパイル使用メモリ | 81,520 KB |
実行使用メモリ | 299,692 KB |
最終ジャッジ日時 | 2024-07-01 22:05:19 |
合計ジャッジ時間 | 116,107 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 48 ms
54,528 KB |
testcase_01 | AC | 47 ms
54,400 KB |
testcase_02 | AC | 45 ms
54,400 KB |
testcase_03 | AC | 44 ms
54,656 KB |
testcase_04 | AC | 202 ms
80,068 KB |
testcase_05 | AC | 202 ms
80,452 KB |
testcase_06 | AC | 206 ms
80,288 KB |
testcase_07 | AC | 202 ms
80,172 KB |
testcase_08 | AC | 200 ms
79,708 KB |
testcase_09 | AC | 1,185 ms
186,932 KB |
testcase_10 | AC | 1,183 ms
185,084 KB |
testcase_11 | AC | 1,186 ms
186,668 KB |
testcase_12 | AC | 1,190 ms
187,140 KB |
testcase_13 | AC | 1,190 ms
186,676 KB |
testcase_14 | AC | 5,181 ms
291,356 KB |
testcase_15 | AC | 3,694 ms
297,924 KB |
testcase_16 | AC | 3,660 ms
297,500 KB |
testcase_17 | AC | 3,724 ms
296,348 KB |
testcase_18 | AC | 3,676 ms
295,752 KB |
testcase_19 | AC | 3,679 ms
298,088 KB |
testcase_20 | AC | 3,661 ms
297,576 KB |
testcase_21 | AC | 3,689 ms
297,568 KB |
testcase_22 | AC | 3,693 ms
299,692 KB |
testcase_23 | AC | 3,686 ms
296,136 KB |
testcase_24 | AC | 3,694 ms
297,560 KB |
testcase_25 | AC | 3,688 ms
297,696 KB |
testcase_26 | AC | 3,691 ms
296,264 KB |
testcase_27 | AC | 3,681 ms
297,620 KB |
testcase_28 | AC | 3,644 ms
297,816 KB |
testcase_29 | AC | 3,692 ms
297,700 KB |
testcase_30 | AC | 3,711 ms
297,280 KB |
testcase_31 | AC | 3,650 ms
297,816 KB |
testcase_32 | AC | 3,690 ms
297,620 KB |
testcase_33 | AC | 3,683 ms
297,976 KB |
testcase_34 | AC | 3,675 ms
293,728 KB |
testcase_35 | AC | 3,669 ms
297,572 KB |
testcase_36 | AC | 3,681 ms
297,564 KB |
testcase_37 | AC | 3,702 ms
297,420 KB |
testcase_38 | AC | 3,684 ms
297,816 KB |
testcase_39 | AC | 1,299 ms
205,972 KB |
testcase_40 | AC | 1,352 ms
203,892 KB |
testcase_41 | AC | 2,395 ms
253,884 KB |
testcase_42 | AC | 497 ms
117,684 KB |
testcase_43 | AC | 3,343 ms
275,100 KB |
testcase_44 | AC | 3,648 ms
296,796 KB |
testcase_45 | AC | 42 ms
55,276 KB |
testcase_46 | AC | 43 ms
54,920 KB |
ソースコード
import collections mod = 998244353 def fft_inplace(a, w): n = len(a) m = n t = 1 while m >= 2: mh = m >> 1 for i in range(0, n, m): for s in range(mh): j, k = i+s, i+mh+s a[j], a[k] = (a[j]+a[k]) % mod, (a[j]-a[k])*w[s*t] % mod m = mh t <<= 1 def ifft_inplace(a, w): n = len(a) m = 2 t = -(n >> 1) while m <= n: mh = m >> 1 for i in range(0, n, m): for s in range(mh): j, k = i+s, i+mh+s a[k] *= w[s*t] a[j], a[k] = (a[j]+a[k]) % mod, (a[j]-a[k]) % mod m <<= 1 t //= 2 n_inv = pow(n, mod-2, mod) for i in range(n): a[i] = a[i] * n_inv % mod def zero_pad(a, n): a.extend([0] * (n - len(a))) def zero_remove(a, n): for _ in range(len(a) - n): a.pop() def normal_convolution(a, b): n = max(len(a) + len(b) - 1, 1) c = [0] * n for idx1, i in enumerate(a): for idx2, j in enumerate(b): c[idx1 + idx2] += i * j return c def normal_convolution_mod(a, b): n = max(len(a) + len(b) - 1, 1) c = [0] * n for idx1, i in enumerate(a): for idx2, j in enumerate(b): c[idx1 + idx2] += i * j for i in range(n): c[i] %= mod return c class Fraction: def __init__(self, num, den): self.num = num self.den = den def __add__(self, other): a_num = self.num a_den = self.den b_num = other.num b_den = other.den n2 = max(len(a_num) + len(b_num) - 1, 1) if n2 < 16: c_num = [(i + j ) % mod for i,j in zip(normal_convolution(a_num, b_den), normal_convolution(b_num, a_den))] c_den = normal_convolution_mod(a_den, b_den) else: n = 1 << (n2-1).bit_length() zero_pad(a_num, n) zero_pad(a_den, n) zero_pad(b_num, n) zero_pad(b_den, n) w_root = pow(3, (mod-1)//n, mod) w = [1] * n for i in range(1, n): w[i] = w[i-1] * w_root % mod fft_inplace(a_num, w) fft_inplace(a_den, w) fft_inplace(b_num, w) fft_inplace(b_den, w) c_num = [(a * d + b * c) % mod for a, b, c, d in zip(a_num, a_den, b_num, b_den)] c_den = [a * b % mod for a, b in zip(a_den, b_den)] ifft_inplace(c_num, w) ifft_inplace(c_den, w) zero_remove(c_num, n) zero_remove(c_den, n) return Fraction(c_num, c_den) n, s = map(int, input().split()) s_inv = pow(s, mod-2, mod) p = [i * s_inv % mod for i in map(int, input().split())] fractions = collections.deque( Fraction([0, i ** 2 % mod], [1, i]) for i in p ) while len(fractions) > 1: fractions.append(fractions.popleft() + fractions.popleft()) ans = 0 factorial = 2 for i in range(1, n + 1): ans += fractions[0].num[i] * factorial % mod factorial = factorial * (i + 2) % mod ans %= mod print(ans)