結果

問題 No.1301 Strange Graph Shortest Path
ユーザー riano
提出日時 2022-01-01 13:59:20
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 215 ms / 3,000 ms
コード長 6,287 bytes
コンパイル時間 2,090 ms
コンパイル使用メモリ 182,188 KB
実行使用メモリ 42,784 KB
最終ジャッジ日時 2024-10-10 03:13:32
合計ジャッジ時間 9,940 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 33
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define rep(i,n) for(int i=0;i<n;i++)
#define rrep(i,n) for(int i=n-1;i>=0;i--)
#define rrep2(i,n,k) for(int i=n-1;i>=n-k;i--)
#define vll(n,i) vector<long long>(n,i)
#define v2ll(n,m,i) vector<vector<long long>>(n,vll(m,i))
#define v3ll(n,m,k,i) vector<vector<vector<long long>>>(n,v2ll(m,k,i))
#define v4ll(n,m,k,l,i) vector<vector<vector<vector<long long>>>>(n,v3ll(m,k,l,i))
#define all(v) v.begin(),v.end()
#define chmin(k,m) k = min(k,m)
#define chmax(k,m) k = max(k,m)
#define Pr pair<ll,ll>
#define Tp tuple<ll,ll,ll>
#define riano_ std::ios::sync_with_stdio(false);std::cin.tie(nullptr)
using Graph = vector<vector<Tp>>;
const ll mod = 998244353;
template<uint64_t mod>
struct modint{
uint64_t val;
constexpr modint(const int64_t val_=0) noexcept:val((val_%int64_t(mod)+int64_t(mod))%int64_t(mod)){}
constexpr modint operator-() const noexcept{
return modint(*this)=mod-val;
}
constexpr modint operator+(const modint rhs) const noexcept{
return modint(*this)+=rhs;
}
constexpr modint operator-(const modint rhs) const noexcept{
return modint(*this)-=rhs;
}
constexpr modint operator*(const modint rhs) const noexcept{
return modint(*this)*=rhs;
}
constexpr modint operator/(const modint rhs) const noexcept{
return modint(*this)/=rhs;
}
constexpr modint &operator+=(const modint rhs) noexcept{
val+=rhs.val;
val-=((val>=mod)?mod:0);
return (*this);
}
constexpr modint &operator-=(const modint rhs) noexcept{
val+=((val<rhs.val)?mod:0);
val-=rhs.val;
return (*this);
}
constexpr modint &operator*=(const modint rhs) noexcept{
val=val*rhs.val%mod;
return (*this);
}
constexpr modint &operator/=(modint rhs) noexcept{
uint64_t ex=mod-2;
modint now=1;
while(ex){
now*=((ex&1)?rhs:1);
rhs*=rhs,ex>>=1;
}
return (*this)*=now;
}
modint & operator++(){
val++;
if (val == mod) val = 0;
return *this;
}
modint operator++(int){
modint<mod> res = *this;
++*this;
return res;
}
constexpr bool operator==(const modint rhs) noexcept{
return val==rhs.val;
}
constexpr bool operator!=(const modint rhs) noexcept{
return val!=rhs.val;
}
friend constexpr ostream &operator<<(ostream& os,const modint x) noexcept{
return os<<(x.val);
}
friend constexpr istream &operator>>(istream& is,modint& x) noexcept{
uint64_t t;
is>>t,x=t;
return is;
}
};
typedef modint<mod> mint;
mint pw(long long a,long long b,long long m = mod){
if(a%m==0) return mint(0);
if(b==0) return mint(1);
else if(b%2==0){
long long x = pw(a,b/2,m).val;
return mint(x*x);
}
else{
long long x = pw(a,b-1,m).val;
return mint(a*x);
}
}
mint modinv(long long a, long long m = mod) {
long long b = m, u = 1, v = 0;
while (b) {
long long t = a / b;
a -= t * b; swap(a, b);
u -= t * v; swap(u, v);
}
u %= m;
return mint(u);
}
#define vm(n,i) vector<mint>(n,i)
#define v2m(n,m,i) vector<vector<mint>>(n,vm(m,i))
#define v3m(n,m,k,i) vector<vector<vector<mint>>>(n,v2m(m,k,i))
#define v4m(n,m,k,l,i) vector<vector<vector<vector<mint>>>>(n,v3m(m,k,l,i))
//MinCostFlow
template< typename flow_t, typename cost_t >
struct PrimalDual {
const cost_t INF;
struct edge {
int to;
flow_t cap;
cost_t cost;
int rev;
bool isrev;
};
vector< vector< edge > > graph;
vector< cost_t > potential, min_cost;
vector< int > prevv, preve;
PrimalDual(int V) : graph(V), INF(numeric_limits< cost_t >::max()) {}
void add_edge(int from, int to, flow_t cap, cost_t cost) {
graph[from].emplace_back((edge) {to, cap, cost, (int) graph[to].size(), false});
graph[to].emplace_back((edge) {from, 0, -cost, (int) graph[from].size() - 1, true});
}
cost_t min_cost_flow(int s, int t, flow_t f) {
int V = (int) graph.size();
cost_t ret = 0;
using Pi = pair< cost_t, int >;
priority_queue< Pi, vector< Pi >, greater< Pi > > que;
potential.assign(V, 0);
preve.assign(V, -1);
prevv.assign(V, -1);
while(f > 0) {
min_cost.assign(V, INF);
que.emplace(0, s);
min_cost[s] = 0;
while(!que.empty()) {
Pi p = que.top();
que.pop();
if(min_cost[p.second] < p.first) continue;
for(int i = 0; i < graph[p.second].size(); i++) {
edge &e = graph[p.second][i];
cost_t nextCost = min_cost[p.second] + e.cost + potential[p.second] - potential[e.to];
if(e.cap > 0 && min_cost[e.to] > nextCost) {
min_cost[e.to] = nextCost;
prevv[e.to] = p.second, preve[e.to] = i;
que.emplace(min_cost[e.to], e.to);
}
}
}
if(min_cost[t] == INF) return -1;
for(int v = 0; v < V; v++) potential[v] += min_cost[v];
flow_t addflow = f;
for(int v = t; v != s; v = prevv[v]) {
addflow = min(addflow, graph[prevv[v]][preve[v]].cap);
}
f -= addflow;
ret += addflow * potential[t];
for(int v = t; v != s; v = prevv[v]) {
edge &e = graph[prevv[v]][preve[v]];
e.cap -= addflow;
graph[v][e.rev].cap += addflow;
}
}
return ret;
}
void output() {
for(int i = 0; i < graph.size(); i++) {
for(auto &e : graph[i]) {
if(e.isrev) continue;
auto &rev_e = graph[e.to][e.rev];
cout << i << "->" << e.to << " (flow: " << rev_e.cap << "/" << rev_e.cap + e.cap << ")" << endl;
}
}
}
};
int main() {
riano_; ll ans = 0;
ll N,M; cin >> N >> M;
//main
PrimalDual<long long,long long> pd(N+2);
// pd.add_edge(from,to,cap,cost);
// pd.min_cost_flow(from,to,flow);
rep(i,M){
ll a,b,c,d; cin >> a >> b >> c >> d;
pd.add_edge(a,b,1,c);
pd.add_edge(a,b,1,d);
pd.add_edge(b,a,1,c);
pd.add_edge(b,a,1,d);
}
//rep(i,2) cout << pd.min_cost_flow(1,N,i+1) << endl;
ans = pd.min_cost_flow(1,N,2);
cout << ans << endl;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0