結果

問題 No.1301 Strange Graph Shortest Path
ユーザー rianoriano
提出日時 2022-01-01 13:59:20
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 215 ms / 3,000 ms
コード長 6,287 bytes
コンパイル時間 2,090 ms
コンパイル使用メモリ 182,188 KB
実行使用メモリ 42,784 KB
最終ジャッジ日時 2024-10-10 03:13:32
合計ジャッジ時間 9,940 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 173 ms
41,056 KB
testcase_03 AC 139 ms
36,864 KB
testcase_04 AC 210 ms
38,656 KB
testcase_05 AC 140 ms
40,960 KB
testcase_06 AC 180 ms
36,096 KB
testcase_07 AC 175 ms
38,144 KB
testcase_08 AC 134 ms
37,376 KB
testcase_09 AC 176 ms
34,432 KB
testcase_10 AC 140 ms
36,608 KB
testcase_11 AC 186 ms
37,376 KB
testcase_12 AC 196 ms
37,248 KB
testcase_13 AC 174 ms
41,272 KB
testcase_14 AC 166 ms
34,560 KB
testcase_15 AC 169 ms
35,840 KB
testcase_16 AC 215 ms
38,784 KB
testcase_17 AC 188 ms
41,504 KB
testcase_18 AC 158 ms
37,632 KB
testcase_19 AC 175 ms
36,224 KB
testcase_20 AC 176 ms
34,944 KB
testcase_21 AC 181 ms
39,424 KB
testcase_22 AC 206 ms
35,840 KB
testcase_23 AC 168 ms
40,960 KB
testcase_24 AC 191 ms
35,712 KB
testcase_25 AC 205 ms
38,912 KB
testcase_26 AC 175 ms
37,504 KB
testcase_27 AC 188 ms
37,504 KB
testcase_28 AC 149 ms
40,704 KB
testcase_29 AC 203 ms
37,888 KB
testcase_30 AC 197 ms
38,912 KB
testcase_31 AC 196 ms
38,400 KB
testcase_32 AC 2 ms
5,248 KB
testcase_33 AC 90 ms
31,744 KB
testcase_34 AC 204 ms
42,784 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define rep(i,n) for(int i=0;i<n;i++)
#define rrep(i,n) for(int i=n-1;i>=0;i--)
#define rrep2(i,n,k) for(int i=n-1;i>=n-k;i--)
#define vll(n,i) vector<long long>(n,i)
#define v2ll(n,m,i) vector<vector<long long>>(n,vll(m,i))
#define v3ll(n,m,k,i) vector<vector<vector<long long>>>(n,v2ll(m,k,i))
#define v4ll(n,m,k,l,i) vector<vector<vector<vector<long long>>>>(n,v3ll(m,k,l,i))
#define all(v) v.begin(),v.end()
#define chmin(k,m) k = min(k,m)
#define chmax(k,m) k = max(k,m)
#define Pr pair<ll,ll>
#define Tp tuple<ll,ll,ll>
#define riano_ std::ios::sync_with_stdio(false);std::cin.tie(nullptr)
using Graph = vector<vector<Tp>>;

const ll mod = 998244353;
template<uint64_t mod>
struct modint{
    uint64_t val;
    constexpr modint(const int64_t val_=0) noexcept:val((val_%int64_t(mod)+int64_t(mod))%int64_t(mod)){}
    constexpr modint operator-() const noexcept{
        return modint(*this)=mod-val;
    }
    constexpr modint operator+(const modint rhs) const noexcept{
        return modint(*this)+=rhs;
    }
    constexpr modint operator-(const modint rhs) const noexcept{
        return modint(*this)-=rhs;
    }
    constexpr modint operator*(const modint rhs) const noexcept{
        return modint(*this)*=rhs;
    }
    constexpr modint operator/(const modint rhs) const noexcept{
        return modint(*this)/=rhs;
    }
    constexpr modint &operator+=(const modint rhs) noexcept{
        val+=rhs.val;
        val-=((val>=mod)?mod:0);
        return (*this);
    }
    constexpr modint &operator-=(const modint rhs) noexcept{
        val+=((val<rhs.val)?mod:0);
        val-=rhs.val;
        return (*this);
    }
    constexpr modint &operator*=(const modint rhs) noexcept{
        val=val*rhs.val%mod;
        return (*this);
    }
    constexpr modint &operator/=(modint rhs) noexcept{
        uint64_t ex=mod-2;
        modint now=1;
        while(ex){
            now*=((ex&1)?rhs:1);
            rhs*=rhs,ex>>=1;
        }
        return (*this)*=now;
    }
    modint & operator++(){
        val++;
        if (val == mod) val = 0;
        return *this;
    }
    modint operator++(int){
        modint<mod> res = *this;
        ++*this;
        return res;
    }
    constexpr bool operator==(const modint rhs) noexcept{
        return val==rhs.val;
    }
    constexpr bool operator!=(const modint rhs) noexcept{
        return val!=rhs.val;
    }
    friend constexpr ostream &operator<<(ostream& os,const modint x) noexcept{
        return os<<(x.val);
    }
    friend constexpr istream &operator>>(istream& is,modint& x) noexcept{
        uint64_t t;
        is>>t,x=t;
        return is;
    }
};
typedef modint<mod> mint;
mint pw(long long a,long long b,long long m = mod){
    if(a%m==0) return mint(0);
    if(b==0) return mint(1);
    else if(b%2==0){
        long long x = pw(a,b/2,m).val;
        return mint(x*x);
    }
    else{
        long long x = pw(a,b-1,m).val;
        return mint(a*x);
    }
}
mint modinv(long long a, long long m = mod) {
    long long b = m, u = 1, v = 0;
    while (b) {
        long long t = a / b;
        a -= t * b; swap(a, b);
        u -= t * v; swap(u, v);
    }
    u %= m;
    return mint(u);
}
#define vm(n,i) vector<mint>(n,i)
#define v2m(n,m,i) vector<vector<mint>>(n,vm(m,i))
#define v3m(n,m,k,i) vector<vector<vector<mint>>>(n,v2m(m,k,i))
#define v4m(n,m,k,l,i) vector<vector<vector<vector<mint>>>>(n,v3m(m,k,l,i))

//MinCostFlow
template< typename flow_t, typename cost_t >
struct PrimalDual {
  const cost_t INF;

  struct edge {
    int to;
    flow_t cap;
    cost_t cost;
    int rev;
    bool isrev;
  };
  vector< vector< edge > > graph;
  vector< cost_t > potential, min_cost;
  vector< int > prevv, preve;

  PrimalDual(int V) : graph(V), INF(numeric_limits< cost_t >::max()) {}

  void add_edge(int from, int to, flow_t cap, cost_t cost) {
    graph[from].emplace_back((edge) {to, cap, cost, (int) graph[to].size(), false});
    graph[to].emplace_back((edge) {from, 0, -cost, (int) graph[from].size() - 1, true});
  }

  cost_t min_cost_flow(int s, int t, flow_t f) {
    int V = (int) graph.size();
    cost_t ret = 0;
    using Pi = pair< cost_t, int >;
    priority_queue< Pi, vector< Pi >, greater< Pi > > que;
    potential.assign(V, 0);
    preve.assign(V, -1);
    prevv.assign(V, -1);

    while(f > 0) {
      min_cost.assign(V, INF);
      que.emplace(0, s);
      min_cost[s] = 0;
      while(!que.empty()) {
        Pi p = que.top();
        que.pop();
        if(min_cost[p.second] < p.first) continue;
        for(int i = 0; i < graph[p.second].size(); i++) {
          edge &e = graph[p.second][i];
          cost_t nextCost = min_cost[p.second] + e.cost + potential[p.second] - potential[e.to];
          if(e.cap > 0 && min_cost[e.to] > nextCost) {
            min_cost[e.to] = nextCost;
            prevv[e.to] = p.second, preve[e.to] = i;
            que.emplace(min_cost[e.to], e.to);
          }
        }
      }
      if(min_cost[t] == INF) return -1;
      for(int v = 0; v < V; v++) potential[v] += min_cost[v];
      flow_t addflow = f;
      for(int v = t; v != s; v = prevv[v]) {
        addflow = min(addflow, graph[prevv[v]][preve[v]].cap);
      }
      f -= addflow;
      ret += addflow * potential[t];
      for(int v = t; v != s; v = prevv[v]) {
        edge &e = graph[prevv[v]][preve[v]];
        e.cap -= addflow;
        graph[v][e.rev].cap += addflow;
      }
    }
    return ret;
  }

  void output() {
    for(int i = 0; i < graph.size(); i++) {
      for(auto &e : graph[i]) {
        if(e.isrev) continue;
        auto &rev_e = graph[e.to][e.rev];
        cout << i << "->" << e.to << " (flow: " << rev_e.cap << "/" << rev_e.cap + e.cap << ")" << endl;
      }
    }
  }
};

int main() {
    riano_; ll ans = 0;
    ll N,M; cin >> N >> M;
    //main関数内
    PrimalDual<long long,long long> pd(N+2);
    // pd.add_edge(from,to,cap,cost);
    // pd.min_cost_flow(from,to,flow);
    rep(i,M){
        ll a,b,c,d; cin >> a >> b >> c >> d;
        pd.add_edge(a,b,1,c);
        pd.add_edge(a,b,1,d);
        pd.add_edge(b,a,1,c);
        pd.add_edge(b,a,1,d);
    }
    //rep(i,2) cout << pd.min_cost_flow(1,N,i+1) << endl;
    ans = pd.min_cost_flow(1,N,2);
    cout << ans << endl;
}
0