結果

問題 No.965 門松列が嫌い
ユーザー cn_449cn_449
提出日時 2022-01-02 03:52:00
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 2 ms / 1,000 ms
コード長 9,087 bytes
コンパイル時間 1,970 ms
コンパイル使用メモリ 154,520 KB
実行使用メモリ 5,248 KB
最終ジャッジ日時 2024-10-11 00:59:36
合計ジャッジ時間 2,997 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 1 ms
5,248 KB
testcase_02 AC 2 ms
5,248 KB
testcase_03 AC 2 ms
5,248 KB
testcase_04 AC 2 ms
5,248 KB
testcase_05 AC 2 ms
5,248 KB
testcase_06 AC 2 ms
5,248 KB
testcase_07 AC 2 ms
5,248 KB
testcase_08 AC 1 ms
5,248 KB
testcase_09 AC 2 ms
5,248 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <iostream>
#include <vector>
#include <algorithm>
#include <cmath>
#include <string>
#include <queue>
#include <stack>
#include <set>
#include <map>
#include <iomanip>
#include <utility>
#include <tuple>
#include <functional>
#include <bitset>
#include <cassert>
#include <complex>
#include <stdio.h>
#include <time.h>
#include <numeric>
#include <random>
#include <unordered_set>
#include <unordered_map>
#define all(a) (a).begin(), (a).end()
#define rep(i, n) for (ll i = 0; i < (n); i++)
//#define rep(i, n) for (int i = 0; i < (n); i++)
#define range(i, a, b) for (ll i = (a); i < (b); i++)
#define pb push_back
#define debug(x) cerr << __LINE__ << ' ' << #x << ':' << (x) << '\n'
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
using namespace std;
typedef long long ll;
typedef unsigned int uint;
typedef unsigned long long ull;
typedef long double ld;
typedef pair<ll, ll> P;
typedef pair<ll, P> Q;
//typedef complex<ld> com;
template<class T> using pri_s = priority_queue<T, vector<T>, greater<T>>;
template<class T> using pri_b = priority_queue<T>;
constexpr int inf = 1000000010;
constexpr int inf2 = 2000000010;
constexpr ll INF = 1000000000000000010;
constexpr int mod1e9 = 1000000007;
constexpr int mod998 = 998244353;
constexpr ld eps = 1e-12;
constexpr ld pi = 3.141592653589793238;
constexpr ll ten(int n) { return n ? 10 * ten(n - 1) : 1; };
int dx[] = { 1,0,-1,0,1,1,-1,-1 }; int dy[] = { 0,1,0,-1,1,-1,1,-1 };
ll mul(ll a, ll b) { return (a > INF / b ? INF : a * b); }
void fail() { cout << "-1\n"; exit(0); } void no() { cout << "No\n"; exit(0); }
template<class T> void er(T a) { cout << a << '\n'; exit(0); }
template<class T, class U> inline bool chmax(T &a, const U &b) { if (a < b) { a = b; return true; } return false; }
template<class T, class U> inline bool chmin(T &a, const U &b) { if (a > b) { a = b; return true; } return false; }
template<class T> istream &operator >> (istream &s, vector<T> &v) { for (auto &e : v) s >> e; return s; }
template<class T> ostream &operator << (ostream &s, const vector<T> &v) { for (auto &e : v) s << e << ' '; return s; }
template<class T, class U> ostream &operator << (ostream &s, const pair<T, U> &p) { s << p.first << ' ' << p.second; return s; }

struct fastio {
	fastio() {
		cin.tie(0); cout.tie(0);
		ios::sync_with_stdio(false);
		cout << fixed << setprecision(20);
		cerr << fixed << setprecision(20);
	}
}fastio_;

ll ppow(ll a, ll b, ll mod) {
	ll res = 1;
	while (b) {
		if (b & 1) res *= a, res %= mod;
		a *= a, a %= mod;
		b >>= 1;
	}
	return res;
}

int find(int p) {
	random_device seed_gen;
	mt19937_64 engine(seed_gen());
	vector<int> div;
	for (int i = 1; i * i <= p - 1; i++) {
		if ((p - 1) % i == 0) {
			div.pb(i);
			if (i != 1 && i * i != p - 1) div.pb((p - 1) / i);
		}
	}
	while (1) {
		int r = engine() % p;
		if (r == 0) continue;
		bool f = true;
		for (int d : div) {
			if (ppow(r, d, p) == 1) f = false;
		}
		if (f) return r;
	}
}

ll modinv(ll a, ll mod) {
	a %= mod;
	if (a == 0) abort();
	ll b = mod, u = 1, v = 0;
	while (b) {
		ll t = a / b;
		a -= t * b; swap(a, b);
		u -= t * v; swap(u, v);
	}
	u %= mod;
	if (u < 0) u += mod;
	return u;
}

int log(ll n, ll p, ll r) {
	ll s = sqrt(p) + 1;
	unordered_map<ll, ll> big, small;
	rep(i, s) small[ppow(r, i, p)] = i;
	rep(i, s) big[ppow(r, i * s, p)] = i * s;
	rep(i, s) {
		ll v = ppow(r, i, p);
		ll nn = n * modinv(v, p) % p;
		if (big.count(nn)) {
			return (i + big[nn]) % (p - 1);
		}
	}
	abort();
}

constexpr ll mod = mod998;
template <int mod> class modint {
public:
	int n;
	modint() : n(0) {};
	modint(ll n_) {
		n = n_ % mod;
		if (n < 0) n += mod;
	}
	modint operator -() const { return n > 0 ? mod - n : -n; }
	bool operator == (const modint &m) const { return n == m.n; }
	bool operator != (const modint &m) const { return n != m.n; }
	modint &operator += (const modint &m) { n += m.n; if (n >= mod) n -= mod; return *this; }
	modint &operator -= (const modint &m) { n -= m.n; if (n < 0) n += mod; return *this; }
	modint &operator *= (const modint &m) { n = ll(n) * m.n % mod; return *this; }
	modint &operator /= (const modint &m) { n = ll(n) * modinv(m).n % mod; return *this; }
	modint operator +(modint m) const { return modint(*this) += m; }
	modint operator -(modint m) const { return modint(*this) -= m; }
	modint operator *(modint m) const { return modint(*this) *= m; }
	modint operator /(modint m) const { return modint(*this) /= m; }
	modint &operator ++ () { *this += 1; return *this; }
	modint operator ++ (int) { *this += 1; return *this - 1; }
	modint &operator -- () { *this -= 1; return *this; }
	modint operator -- (int) { *this -= 1; return *this + 1; }
	modint pow(ll b) const {
		modint res = 1, a = modint(*this);
		while (b) {
			if (b & 1) res *= a;
			a *= a;
			b >>= 1;
		}
		return res;
	}
	friend istream &operator >> (istream &s, modint<mod> &a) { s >> a.n; return s; }
	friend ostream &operator << (ostream &s, modint<mod> &a) { s << a.n; return s; }
};

using mint = modint<mod>;
vector<mint> fac, inv, facinv;

mint modinv(mint x) {
	ll a = x.n;
	if (a == 0) abort();
	if (a < (ll)inv.size()) return inv[a];
	ll b = mod, u = 1, v = 0;
	while (b) {
		ll t = a / b;
		a -= t * b; swap(a, b);
		u -= t * v; swap(u, v);
	}
	mint res = u;
	return res;
}

void modcalc(int n) {
	fac.resize(n); inv.resize(n); facinv.resize(n);
	fac[0] = 1; fac[1] = 1; inv[1] = 1;
	facinv[0] = 1; facinv[1] = 1;
	for (ll i = 2; i < n; i++) {
		fac[i] = fac[i - 1] * i;
		inv[i] = -inv[mod % i] * (mod / i);
		facinv[i] = facinv[i - 1] * inv[i];
	}
}

mint comb(ll n, ll k) {
	if (n < 0 || k < 0 || n < k) return 0;
	return fac[n] * facinv[k] * facinv[n - k];
}

mint perm(ll n, ll k) {
	if (n < 0 || k < 0 || n < k) return 0;
	return fac[n] * facinv[n - k];
}

mint hom(ll n, ll k) {
	if (n < 0 || k < 0 || n == 0 && k > 0) return 0;
	if (n == 0 && k == 0) return 1;
	return fac[n + k - 1] * facinv[k] * facinv[n - 1];
}

template<class T> class segtree {
	int n;
	vector<T> data;
	T id = 0;
	T operation(T a, T b) { return a + b; }
public:
	segtree(int _n) {
		n = 1;
		while (n < _n + 2) n <<= 1;
		data = vector<T>(2 * n, id);
	}
	segtree(vector<T> vec) {
		int _n = vec.size();
		n = 1;
		while (n < _n + 2) n <<= 1;
		data = vector<T>(2 * n, id);
		for (int i = 0; i < _n; i++) data[i + n] = vec[i];
		for (int i = n - 1; i >= 1; i--) data[i] = operation(data[i << 1], data[i << 1 | 1]);
	}
	void change(int i, T x) {
		i += n;
		data[i] = x;
		while (i > 1) {
			i >>= 1;
			data[i] = operation(data[i << 1], data[i << 1 | 1]);
		}
	}
	void add(int i, T x) { change(i, data[i + n] + x); }
	T get(int a, int b) {
		T left = id; T right = id;
		a += n; b += n;
		while (a < b) {
			if (a & 1) left = operation(left, data[a++]);
			if (b & 1) right = operation(data[--b], right);
			a >>= 1; b >>= 1;
		}
		return operation(left, right);
	}
	T get_all() { return data[1]; }
	T operator[](int i) { return data[i + n]; }
};

class unionfind {
	vector<int> par;
	vector<int> sz;
public:
	unionfind(int n) {
		par = vector<int>(n);
		for (int i = 0; i < n; i++) par[i] = i;
		sz = vector<int>(n, 1);
	}
	int find(int x) {
		if (par[x] == x) return x;
		else return par[x] = find(par[x]);
	}
	int size(int x) { return sz[find(x)]; }
	bool same(int x, int y) { return find(x) == find(y); }
	void unite(int x, int y) {
		x = find(x);
		y = find(y);
		if (x == y) return;
		if (sz[x] < sz[y]) {
			par[x] = y;
			sz[y] += sz[x];
		}
		else {
			par[y] = x;
			sz[x] += sz[y];
		}
	}
};

template<class T> vector<vector<T>> mat_mul(vector<vector<T>> a, vector<vector<T>> b) {
	int n = a.size();
	vector<vector<T>> ans(n, vector<T>(n));
	for (int i = 0; i < n; i++) {
		for (int j = 0; j < n; j++) {
			for (int k = 0; k < n; k++) {
				ans[i][j] += a[i][k] * b[k][j];
			}
		}
	}
	return ans;
}

template<class T> vector<vector<T>> mat_pow(vector<vector<T>> a, ll b) {
	int n = a.size();
	vector<vector<T>> ans(n, vector<T>(n));
	for (int i = 0; i < n; i++) ans[i][i] = 1;
	while (b) {
		if (b & 1) ans = mat_mul(ans, a);
		a = mat_mul(a, a);
		b >>= 1;
	}
	return ans;
}

vector<ll> shrink(vector<ll> vec) {
	int vecsize = vec.size();
	vector<ll> tmpvec = vec;
	sort(tmpvec.begin(), tmpvec.end());
	tmpvec.erase(unique(tmpvec.begin(), tmpvec.end()), tmpvec.end());
	vector<ll> res(vecsize);
	for (int i = 0; i < vecsize; i++) res[i] = lower_bound(tmpvec.begin(), tmpvec.end(), vec[i]) - tmpvec.begin();
	return res;
}

template<class T> void fwt(vector<T> &v) {
	int n = v.size();
	for (int i = 1; i < n; i <<= 1) {
		for (int j = 0; j < n; ++j) {
			if ((j & i) == 0) {
				T x = v[j], y = v[j | i];
				v[j] = x + y;
				v[j | i] = x - y;
			}
		}
	}
}

template<class T> void ifwt(vector<T> &v) {
	int n = v.size();
	for (int i = 1; i < n; i <<= 1) {
		for (int j = 0; j < n; ++j) {
			if ((j & i) == 0) {
				T x = v[j], y = v[j | i];
				v[j] = (x + y) / 2;
				v[j | i] = (x - y) / 2;
			}
		}
	}
}

int main() {
	int a, b, c;
	cin >> a >> b >> c;
	if (a > b) {
		a = inf - a, b = inf - b, c = inf - c;
	}
	int ans = abs(c - a);
	chmin(ans, b - max(a, c));
	cout << ans << '\n';
}
0