結果

問題 No.992 最長増加部分列の数え上げ
ユーザー t98slidert98slider
提出日時 2022-01-02 07:14:50
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 136 ms / 2,000 ms
コード長 14,841 bytes
コンパイル時間 2,111 ms
コンパイル使用メモリ 182,088 KB
実行使用メモリ 10,544 KB
最終ジャッジ日時 2024-10-11 04:26:51
合計ジャッジ時間 8,732 ms
ジャッジサーバーID
(参考情報)
judge1 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 2 ms
6,816 KB
testcase_02 AC 2 ms
6,816 KB
testcase_03 AC 2 ms
6,816 KB
testcase_04 AC 49 ms
6,820 KB
testcase_05 AC 35 ms
6,816 KB
testcase_06 AC 61 ms
6,816 KB
testcase_07 AC 44 ms
6,816 KB
testcase_08 AC 23 ms
6,820 KB
testcase_09 AC 45 ms
6,816 KB
testcase_10 AC 60 ms
6,912 KB
testcase_11 AC 76 ms
7,296 KB
testcase_12 AC 16 ms
6,820 KB
testcase_13 AC 42 ms
6,820 KB
testcase_14 AC 43 ms
6,820 KB
testcase_15 AC 16 ms
6,816 KB
testcase_16 AC 120 ms
10,284 KB
testcase_17 AC 23 ms
6,820 KB
testcase_18 AC 41 ms
6,816 KB
testcase_19 AC 75 ms
7,296 KB
testcase_20 AC 135 ms
10,380 KB
testcase_21 AC 133 ms
10,452 KB
testcase_22 AC 132 ms
10,520 KB
testcase_23 AC 134 ms
10,532 KB
testcase_24 AC 134 ms
10,432 KB
testcase_25 AC 133 ms
10,528 KB
testcase_26 AC 132 ms
10,500 KB
testcase_27 AC 134 ms
10,428 KB
testcase_28 AC 135 ms
10,544 KB
testcase_29 AC 136 ms
10,384 KB
testcase_30 AC 97 ms
10,196 KB
testcase_31 AC 97 ms
10,252 KB
testcase_32 AC 98 ms
10,312 KB
testcase_33 AC 96 ms
10,428 KB
testcase_34 AC 95 ms
10,400 KB
testcase_35 AC 100 ms
10,256 KB
testcase_36 AC 100 ms
10,260 KB
testcase_37 AC 100 ms
10,324 KB
testcase_38 AC 100 ms
10,248 KB
testcase_39 AC 100 ms
10,252 KB
testcase_40 AC 96 ms
10,404 KB
testcase_41 AC 97 ms
10,380 KB
testcase_42 AC 99 ms
10,316 KB
testcase_43 AC 97 ms
10,436 KB
testcase_44 AC 99 ms
10,328 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
#define all(v) v.begin(), v.end()
#define rall(v) v.rbegin(), v.rend()
#define rep(i,n) for(int i=0;i<(int)(n);i++)
#define drep(i,j,n) for(int i=0;i<(int)(n-1);i++)for(int j=i+1;j<(int)(n);j++)
#define trep(i,j,k,n) for(int i=0;i<(int)(n-2);i++)for(int j=i+1;j<(int)(n-1);j++)for(int k=j+1;k<(int)(n);k++)
#define codefor int test;scanf("%d",&test);while(test--)
#define INT(...) int __VA_ARGS__;in(__VA_ARGS__)
#define LL(...) ll __VA_ARGS__;in(__VA_ARGS__)
#define yes(ans) if(ans)printf("yes\n");else printf("no\n")
#define Yes(ans) if(ans)printf("Yes\n");else printf("No\n")
#define YES(ans) if(ans)printf("YES\n");else printf("NO\n")
#define popcount(v) __builtin_popcountll(v)
#define vector2d(type,name,h,...) vector<vector<type>>name(h,vector<type>(__VA_ARGS__))
#define vector3d(type,name,h,w,...) vector<vector<vector<type>>>name(h,vector<vector<type>>(w,vector<type>(__VA_ARGS__)))
#define vector4d(type,name,h,w,d,...) vector<vector<vector<vector<type>>>>name(h,vector<vector<vector<type>>>(w,vector<vector<type>>(d,vector<type>(__VA_ARGS__))))
using namespace std;
using ll = long long;
template<class T> using rpriority_queue = priority_queue<T, vector<T>, greater<T>>;
const int MOD=1000000007;
const int MOD2=998244353;
const int INF=1<<30;
const ll INF2=1LL<<60;
void scan(int& a){scanf("%d",&a);}
void scan(long long& a){scanf("%lld",&a);}
template<class T,class L>void scan(pair<T, L>& p){scan(p.first);scan(p.second);}
template<class T,class U,class V>void scan(tuple<T,U,V>& p){scan(get<0>(p));scan(get<1>(p));scan(get<2>(p));}
template<class T, size_t size> void scan(array<T, size>& a){ for(auto&& i : a) scan(i);}
template<class T> void scan(T& a){cin>>a;}
template<class T> void scan(vector<T>& vec){for(auto&& it:vec)scan(it);}
void in(){}
template <class Head, class... Tail> void in(Head& head, Tail&... tail){scan(head);in(tail...);}
void print(const int& a){printf("%d",a);}
void print(const long long& a){printf("%lld",a);}
void print(const double& a){printf("%.15lf",a);}
template<class T,class L>void print(const pair<T, L>& p){print(p.first);putchar(' ');print(p.second);}
template<class T> void print(const T& a){cout<<a;}
template<class T> void print(const vector<T>& vec){if(vec.empty())return;print(vec[0]);for(auto it=vec.begin();++it!= vec.end();){putchar(' ');print(*it);}}
void out(){putchar('\n');}
template<class T> void out(const T& t){print(t);putchar('\n');}
template <class Head, class... Tail> void out(const Head& head,const Tail&... tail){print(head);putchar(' ');out(tail...);}
template<class T> void dprint(const T& a){cerr<<a;}
template<class T> void dprint(const vector<T>& vec){if(vec.empty())return;cerr<<vec[0];for(auto it=vec.begin();++it!= vec.end();){cerr<<" "<<*it;}}
void debug(){cerr<<endl;}
template<class T> void debug(const T& t){dprint(t);cerr<<endl;}
template <class Head, class... Tail> void debug(const Head& head, const Tail&... tail){dprint(head);cerr<<" ";debug(tail...);}
ll intpow(ll a, ll b){ ll ans = 1; while(b){ if(b & 1) ans *= a; a *= a; b /= 2; } return ans; }
ll modpow(ll a, ll b, ll p){ ll ans = 1; while(b){ if(b & 1) (ans *= a) %= p; (a *= a) %= p; b /= 2; } return ans; }
ll modinv(ll a, ll m) {ll b = m, u = 1, v = 0;while (b) {ll t = a / b;a -= t * b; swap(a, b);u -= t * v; swap(u, v);}u %= m;if (u < 0) u += m;return u;}
ll updivide(ll a,ll b){return (a+b-1)/b;}
int msb(ll v){return 63-__builtin_clzll(v);}
template<class T> void chmax(T &a,const T b){if(b>a)a=b;}
template<class T> void chmin(T &a,const T b){if(b<a)a=b;}

namespace internal {constexpr long long safe_mod(long long x, long long m) {x %= m;if (x < 0) x += m;return x;}struct barrett {unsigned int _m;unsigned long long im;explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}unsigned int umod() const { return _m; }};
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {if (m == 1) return 0;unsigned int _m = (unsigned int)(m);unsigned long long r = 1;unsigned long long y = safe_mod(x, m);while (n) {if (n & 1) r = (r * y) % _m;y = (y * y) % _m;n >>= 1;}return r;}constexpr bool is_prime_constexpr(int n) {if (n <= 1) return false;if (n == 2 || n == 7 || n == 61) return true;if (n % 2 == 0) return false;long long d = n - 1;while (d % 2 == 0) d /= 2;constexpr long long bases[3] = {2, 7, 61};for (long long a : bases) {long long t = d;long long y = pow_mod_constexpr(a, t, n);while (t != n - 1 && y != 1 && y != n - 1) {y = y * y % n;t <<= 1;}if (y != n - 1 && t % 2 == 0) {return false;}}return true;}template <int n> constexpr bool is_prime = is_prime_constexpr(n);
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {a = safe_mod(a, b);if (a == 0) return {b, 0};long long s = b, t = a;long long m0 = 0, m1 = 1;while (t) {long long u = s / t;s -= t * u;m0 -= m1 * u;auto tmp = s;s = t;t = tmp;tmp = m0;m0 = m1;m1 = tmp;}if (m0 < 0) m0 += b / s;return {s, m0};}constexpr int primitive_root_constexpr(int m) {if (m == 2) return 1;if (m == 167772161) return 3;if (m == 469762049) return 3;if (m == 754974721) return 11;if (m == 998244353) return 3;int divs[20] = {};divs[0] = 2;int cnt = 1;int x = (m - 1) / 2;while (x % 2 == 0) x /= 2;for (int i = 3; (long long)(i)*i <= x; i += 2) {if (x % i == 0) {divs[cnt++] = i;while (x % i == 0) {x /= i;}}}if (x > 1) {divs[cnt++] = x;}for (int g = 2;; g++) {bool ok = true;for (int i = 0; i < cnt; i++) {if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {ok = false;break;}}if (ok) return g;}}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);unsigned long long floor_sum_unsigned(unsigned long long n,unsigned long long m,unsigned long long a,unsigned long long b) {unsigned long long ans = 0;while (true) {if (a >= m) {ans += n * (n - 1) / 2 * (a / m);a %= m;}if (b >= m) {ans += n * (b / m);b %= m;}unsigned long long y_max = a * n + b;if (y_max < m) break;n = (unsigned long long)(y_max / m);b = (unsigned long long)(y_max % m);std::swap(m, a);}return ans;}
template <class T> using is_integral = typename std::is_integral<T>;template <class T>using is_signed_int =typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,std::true_type,std::false_type>::type;template <class T>using is_unsigned_int =typename std::conditional<is_integral<T>::value &&std::is_unsigned<T>::value,std::true_type,std::false_type>::type;template <class T>using to_unsigned = typename std::conditional<is_signed_int<T>::value,std::make_unsigned<T>,std::common_type<T>>::type;template <class T> using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;template <class T> using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;template <class T> using to_unsigned_t = typename to_unsigned<T>::type;struct modint_base {};struct static_modint_base : modint_base {};template <class T> using is_modint = std::is_base_of<modint_base, T>;template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;}  // namespace internal
template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {using mint = static_modint;
  public:
    static constexpr int mod() { return m; }static mint raw(int v) {mint x;x._v = v;return x;}static_modint() : _v(0) {}template <class T, internal::is_signed_int_t<T>* = nullptr>static_modint(T v) {long long x = (long long)(v % (long long)(umod()));if (x < 0) x += umod();_v = (unsigned int)(x);}template <class T, internal::is_unsigned_int_t<T>* = nullptr>static_modint(T v) {_v = (unsigned int)(v % umod());}unsigned int val() const { return _v; }mint& operator++() {_v++;if (_v == umod()) _v = 0;return *this;}mint& operator--() {if (_v == 0) _v = umod();_v--;return *this;}mint operator++(int) {mint result = *this;++*this;return result;}mint operator--(int) {mint result = *this;--*this;return result;}mint& operator+=(const mint& rhs) {_v += rhs._v;if (_v >= umod()) _v -= umod();return *this;}mint& operator-=(const mint& rhs) {_v -= rhs._v;if (_v >= umod()) _v += umod();return *this;}mint& operator*=(const mint& rhs) {unsigned long long z = _v;z *= rhs._v;_v = (unsigned int)(z % umod());return *this;}mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
    mint operator+() const { return *this; }mint operator-() const { return mint() - *this; }mint pow(long long n) const {assert(0 <= n);mint x = *this, r = 1;while (n) {if (n & 1) r *= x;x *= x;n >>= 1;}return r;}mint inv() const {if (prime) {assert(_v);return pow(umod() - 2);} else {auto eg = internal::inv_gcd(_v, m);assert(eg.first == 1);return eg.second;}}friend mint operator+(const mint& lhs, const mint& rhs) {return mint(lhs) += rhs;}friend mint operator-(const mint& lhs, const mint& rhs) {return mint(lhs) -= rhs;}friend mint operator*(const mint& lhs, const mint& rhs) {return mint(lhs) *= rhs;}friend mint operator/(const mint& lhs, const mint& rhs) {return mint(lhs) /= rhs;}friend bool operator==(const mint& lhs, const mint& rhs) {return lhs._v == rhs._v;}friend bool operator!=(const mint& lhs, const mint& rhs) {return lhs._v != rhs._v;}friend istream& operator>>(istream& os,mint& rhs) noexcept {long long v;rhs = mint{(os >> v, v)};return os;}friend constexpr ostream& operator << (ostream &os, const mint& rhs) noexcept {return os << rhs._v;}
  private:
    unsigned int _v;static constexpr unsigned int umod() { return m; }static constexpr bool prime = internal::is_prime<m>;
};
using mint = static_modint<1000000007>;
using mint2 = static_modint<998244353>;

template<class T> struct compressed_array{
    int N;
    vector<T> dat;
    const T operator[](int i) const { return dat[i]; }
    T operator[](int i) { return dat[i]; }
    compressed_array(){}
    compressed_array(vector<int> &a){
        dat=a;
    }
    void build(){
        sort(dat.begin(), dat.end());
        dat.erase(unique(dat.begin(), dat.end()), dat.end());
        N = dat.size();
    }
    int size(){return N;}
    void insert(const T v){
        dat.push_back(v);
    }
    void insert(vector<T> &a){
        for(int i = 0; i < a.size() ; i++)dat.push_back(a[i]);
    }
    //type1でfirst,type2でsecond
    void insert(vector<pair<T, T>> &a, int type){
        if(type==1){
            for(int i = 0; i < a.size(); i++)dat.push_back(a[i].first);
        }else{
            for(int i = 0; i < a.size(); i++)dat.push_back(a[i].second);
        }
    }
    template<size_t size> void insert(vector<array<T,size>> &a, int pos){
        assert(0 <= pos && pos < size);
        for(int i = 0; i < a.size() ; i++){
            dat.push_back(a[i][pos]);
        }
    }
    int load(T &v){
        return lower_bound(dat.begin(), dat.end(), v) - dat.begin();
    }
    void load(vector<T> &a){
        for(int i = 0; i < a.size() ; i++)a[i] = load(a[i]);
    }
    void load(vector<pair<T, T>> &a, int type){
        if(type==1){
            for(int i = 0; i < a.size(); i++)a[i].first = load(a[i].first);
        }else{
            for(int i = 0; i < a.size(); i++)a[i].second = load(a[i].second);
        }
    }
    template<size_t size> void load(vector<array<T,size>> &a, int pos){
        assert(0 <= pos && pos < size);
        for(int i = 0; i < a.size() ; i++){
            a[i][pos] = load(a[i][pos]);
        }
    }
};

template <class S, S (*op)(S, S), S (*e)()> struct segtree {
  public:
    segtree() : segtree(0) {}
    segtree(int n) : segtree(std::vector<S>(n, e())) {}
    segtree(const std::vector<S>& v) : _n(int(v.size())) {
        log = ceil_pow2(_n);
        size = 1 << log;
        d = std::vector<S>(2 * size, e());
        for (int i = 0; i < _n; i++) d[size + i] = v[i];
        for (int i = size - 1; i >= 1; i--) {
            update(i);
        }
    }

    void set(int p, S x) {
        assert(0 <= p && p < _n);
        p += size;
        d[p] = x;
        for (int i = 1; i <= log; i++) update(p >> i);
    }

    S get(int p) {
        assert(0 <= p && p < _n);
        return d[p + size];
    }
    const S operator[](int p) const { return get(p); }
    S operator[](int p) { return get(p); }

    S prod(int l, int r) {
        assert(0 <= l && l <= r && r <= _n);
        S sml = e(), smr = e();
        l += size;
        r += size;

        while (l < r) {
            if (l & 1) sml = op(sml, d[l++]);
            if (r & 1) smr = op(d[--r], smr);
            l >>= 1;
            r >>= 1;
        }
        return op(sml, smr);
    }

    S all_prod() { return d[1]; }

    template <bool (*f)(S)> int max_right(int l) {
        return max_right(l, [](S x) { return f(x); });
    }
    template <class F> int max_right(int l, F f) {
        assert(0 <= l && l <= _n);
        assert(f(e()));
        if (l == _n) return _n;
        l += size;
        S sm = e();
        do {
            while (l % 2 == 0) l >>= 1;
            if (!f(op(sm, d[l]))) {
                while (l < size) {
                    l = (2 * l);
                    if (f(op(sm, d[l]))) {
                        sm = op(sm, d[l]);
                        l++;
                    }
                }
                return l - size;
            }
            sm = op(sm, d[l]);
            l++;
        } while ((l & -l) != l);
        return _n;
    }

    template <bool (*f)(S)> int min_left(int r) {
        return min_left(r, [](S x) { return f(x); });
    }
    template <class F> int min_left(int r, F f) {
        assert(0 <= r && r <= _n);
        assert(f(e()));
        if (r == 0) return 0;
        r += size;
        S sm = e();
        do {
            r--;
            while (r > 1 && (r % 2)) r >>= 1;
            if (!f(op(d[r], sm))) {
                while (r < size) {
                    r = (2 * r + 1);
                    if (f(op(d[r], sm))) {
                        sm = op(d[r], sm);
                        r--;
                    }
                }
                return r + 1 - size;
            }
            sm = op(d[r], sm);
        } while ((r & -r) != r);
        return 0;
    }

  private:
    int _n, size, log;
    std::vector<S> d;
    int ceil_pow2(int n) {
        int x = 0;
        while ((1U << x) < (unsigned int)(n)) x++;
        return x;
    }
    void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
};

using S=pair<int,mint>;
S op(S a, S b){
    if(a.first>b.first)return a;
    if(b.first>a.first)return b;
    return {a.first,a.second+b.second};
}

S e(){
    return {0,0};
}


int main(){
    INT(n);
    vector<int> a(n);
    in(a);
    compressed_array<int> ca(a);
    ca.build();
    ca.load(a);
    rep(i,n)a[i]++;
    segtree<S,op,e> seg(ca.size()+1);
    seg.set(0,{0,1});
    rep(i,n){
        auto p=seg.prod(0,a[i]);
        p.first++;
        if(p.first==seg[a[i]].first){
            auto q=seg[a[i]];
            seg.set(a[i],{p.first,p.second+q.second});
        }else seg.set(a[i],p);
    }
    out(seg.all_prod().second);
}
0