結果
問題 | No.1855 Intersected Lines |
ユーザー | Mitarushi |
提出日時 | 2022-01-05 10:38:13 |
言語 | Nim (2.2.0) |
結果 |
RE
|
実行時間 | - |
コード長 | 3,677 bytes |
コンパイル時間 | 3,870 ms |
コンパイル使用メモリ | 67,196 KB |
実行使用メモリ | 6,948 KB |
最終ジャッジ日時 | 2024-07-01 11:34:21 |
合計ジャッジ時間 | 5,103 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | RE | - |
testcase_01 | RE | - |
testcase_02 | RE | - |
testcase_03 | RE | - |
testcase_04 | RE | - |
testcase_05 | RE | - |
testcase_06 | RE | - |
testcase_07 | RE | - |
testcase_08 | RE | - |
testcase_09 | RE | - |
testcase_10 | RE | - |
testcase_11 | RE | - |
testcase_12 | RE | - |
testcase_13 | RE | - |
testcase_14 | RE | - |
testcase_15 | RE | - |
testcase_16 | RE | - |
testcase_17 | RE | - |
testcase_18 | RE | - |
testcase_19 | RE | - |
testcase_20 | RE | - |
testcase_21 | RE | - |
testcase_22 | RE | - |
testcase_23 | RE | - |
testcase_24 | RE | - |
testcase_25 | RE | - |
testcase_26 | RE | - |
testcase_27 | RE | - |
testcase_28 | RE | - |
testcase_29 | RE | - |
testcase_30 | RE | - |
testcase_31 | RE | - |
testcase_32 | RE | - |
ソースコード
import strutils, sequtils, math, sugar, algorithm const MOD = 998244353 proc mod_pow(r, x: int): int = var r = r x = x result = 1 while x > 0: if x mod 2 == 1: result = result * r mod MOD r = r * r mod MOD x = x div 2 type Combination = ref object factorial: seq[int] factorial_inv: seq[int] proc init_combination(n: int): Combination = result = Combination( factorial: newSeq[int](n), factorial_inv: newSeq[int](n) ) result.factorial[0] = 1 for i in 1..<n: result.factorial[i] = result.factorial[i - 1] * i mod MOD result.factorial_inv[n - 1] = mod_pow(result.factorial[n - 1], MOD - 2) for i in countdown(n - 1, 1): result.factorial_inv[i - 1] = result.factorial_inv[i] * i mod MOD proc combination(c: Combination, a, b: int): int = if a < 0 or b < 0 or a < b: return 0 c.factorial[a] * c.factorial_inv[b] mod MOD * c.factorial_inv[a - b] mod MOD proc fft(a: var seq[int], w: seq[int]) = let n = a.len var m = n t = 1 while m >= 2: let mh = m shr 1 for i in countup(0, n-1, m): for s in 0..<mh: let j = i + s k = j + mh (a[j], a[k]) = ((a[j] + a[k]) mod MOD, (a[j] - a[k]) * w[s * t] mod MOD) m = mh t *= 2 proc ifft(a: var seq[int], w: seq[int]) = let n = a.len var m = 2 t = n shr 1 while m <= n: let mh = m shr 1 for i in countup(0, n-1, m): for s in 0..<mh: let j = i + s k = j + mh a[k] *= w[n - s * t] (a[j], a[k]) = ((a[j] + a[k]) mod MOD, (a[j] - a[k]) mod MOD) m = m shl 1 t = t shr 1 let n_inv = mod_pow(n, MOD - 2) for i in 0..<n: a[i] *= n_inv a[i] = a[i] mod MOD proc convolution(a, b: seq[int]): seq[int] = let n2 = max(a.len + b.len - 1, 1) let n = n2.nextPowerOfTwo var a = a b = b a.setLen(n) b.setLen(n) let w_root = mod_pow(3, (MOD - 1) div n) var w = newSeq[int](n + 1) w[0] = 1 for i in 1..n: w[i] = w[i - 1] * w_root mod MOD fft(a, w) fft(b, w) result = collect(newSeq): for (x, y) in zip(a, b): x * y mod MOD ifft(result, w) result.setLen(n2) for idx, i in result: if i < 0: result[idx] += MOD proc inv(x: int): int = mod_pow(x, MOD - 2) proc double_factorial(c: Combination, x: int): int = c.factorial[x] * c.factorial_inv[x div 2] mod MOD * mod_pow(2, MOD - 1 - x div 2) mod MOD let n = stdin.readLine.parseInt let s = stdin.readLine let r = s.count('R') b = s.count('B') if r mod 2 == 1 or b mod 2 == 1: echo 0 quit() let c = init_combination(500000) var ans = 0 if r >= 4: ans += combination(c, r, 4) * double_factorial(c, r - 4) mod MOD * double_factorial(c, b) ans = ans mod MOD if b >= 4: ans += combination(c, b, 4) * double_factorial(c, b - 4) mod MOD * double_factorial(c, r) ans = ans mod MOD if r >= 2 and b >= 2: var acc = newSeq[int](2 * n) var acc_b = 0 for i in s: if i == 'B': acc_b += 1 else: acc[acc_b] += 1 var acc_rev = acc acc_rev.reverse() let conv = convolution(acc, acc_rev) var s = 0 for i in 0..<n: s += conv[i + n - 1] * i mod MOD * (b - i) s = s mod MOD ans += s * double_factorial(c, r - 2) mod MOD * double_factorial(c, b - 2) ans = ans mod MOD echo ans