結果
| 問題 |
No.826 連絡網
|
| コンテスト | |
| ユーザー |
vwxyz
|
| 提出日時 | 2022-01-05 13:23:49 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
TLE
(最新)
AC
(最初)
|
| 実行時間 | - |
| コード長 | 7,745 bytes |
| コンパイル時間 | 931 ms |
| コンパイル使用メモリ | 82,176 KB |
| 実行使用メモリ | 419,328 KB |
| 最終ジャッジ日時 | 2024-10-15 18:18:39 |
| 合計ジャッジ時間 | 22,004 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 28 TLE * 2 |
ソースコード
import sys
readline=sys.stdin.readline
from collections import defaultdict, deque
class Graph:
def __init__(self,V,edges=False,graph=False,directed=False,weighted=False,inf=float("inf")):
self.V=V
self.directed=directed
self.weighted=weighted
self.inf=inf
if not graph:
self.edges=edges
self.graph=[[] for i in range(self.V)]
if weighted:
for i,j,d in self.edges:
self.graph[i].append((j,d))
if not self.directed:
self.graph[j].append((i,d))
else:
for i,j in self.edges:
self.graph[i].append(j)
if not self.directed:
self.graph[j].append(i)
else:
self.graph=graph
self.edges=[]
for i in range(self.V):
if self.weighted:
for j,d in self.graph[i]:
if self.directed or not self.directed and i<=j:
self.edges.append((i,j,d))
else:
for j in self.graph[i]:
if self.directed or not self.directed and i<=j:
self.edges.append((i,j))
def SIV_BFS(self,s,bfs_tour=False,bipartite_graph=False,linked_components=False,parents=False,unweighted_dist=False,weighted_dist=False):
seen=[False]*self.V
seen[s]=True
if bfs_tour:
bt=[s]
if linked_components:
lc=[s]
if parents:
ps=[None]*self.V
if unweighted_dist or bipartite_graph:
uwd=[self.inf]*self.V
uwd[s]=0
if weighted_dist:
wd=[self.inf]*self.V
wd[s]=0
queue=deque([s])
while queue:
x=queue.popleft()
for y in self.graph[x]:
if self.weighted:
y,d=y
if not seen[y]:
seen[y]=True
queue.append(y)
if bfs_tour:
bt.append(y)
if linked_components:
lc.append(y)
if parents:
ps[y]=x
if unweighted_dist or bipartite_graph:
uwd[y]=uwd[x]+1
if weighted_dist:
wd[y]=wd[x]+d
if bipartite_graph:
bg=[[],[]]
for tpl in self.edges:
i,j=tpl[:2] if self.weighted else tpl
if uwd[i]==self.inf or uwd[j]==self.inf:
continue
if not uwd[i]%2^uwd[j]%2:
bg=False
break
else:
for x in range(self.V):
if uwd[x]==self.inf:
continue
bg[uwd[x]%2].append(x)
retu=()
if bfs_tour:
retu+=(bt,)
if bipartite_graph:
retu+=(bg,)
if linked_components:
retu+=(lc,)
if parents:
retu+=(ps,)
if unweighted_dist:
retu+=(uwd,)
if weighted_dist:
retu+=(wd,)
if len(retu)==1:
retu=retu[0]
return retu
def MIV_BFS(self,initial_vertices=False,bipartite_graph=False,linked_components=False,parents=False):
if not initial_vertices:
initial_vertices=[i for i in range(self.V)]
seen=[False]*self.V
if bipartite_graph:
bg=[None]*self.V
cnt=-1
if linked_components:
lc=[]
if parents:
ps=[None]*self.V
for s in initial_vertices:
if seen[s]:
continue
seen[s]=True
if bipartite_graph:
cnt+=1
bg[s]=(cnt,0)
if linked_components:
lc.append([s])
queue=deque([s])
while queue:
x=queue.popleft()
for y in self.graph[x]:
if self.weighted:
y,d=y
if not seen[y]:
seen[y]=True
queue.append(y)
if bipartite_graph:
bg[y]=(cnt,bg[x][1]^1)
if linked_components:
lc[-1].append(y)
if parents:
ps[y]=x
if bipartite_graph:
bg_=bg
bg=[[[],[]] for i in range(cnt+1)]
for tpl in self.edges:
i,j=tpl[:2] if self.weighted else tpl
if not bg_[i][1]^bg_[j][1]:
bg[bg_[i][0]]=False
for x in range(self.V):
if bg[bg_[x][0]]:
bg[bg_[x][0]][bg_[x][1]].append(x)
retu=()
if bipartite_graph:
retu+=(bg,)
if linked_components:
retu+=(lc,)
if parents:
retu=(ps,)
if len(retu)==1:
retu=retu[0]
return retu
class Prime:
def __init__(self,N):
assert N<=10**8
self.smallest_prime_factor=[None]*(N+1)
for i in range(2,N+1,2):
self.smallest_prime_factor[i]=2
n=int(N**.5)+1
for p in range(3,n,2):
if self.smallest_prime_factor[p]==None:
self.smallest_prime_factor[p]=p
for i in range(p**2,N+1,2*p):
if self.smallest_prime_factor[i]==None:
self.smallest_prime_factor[i]=p
for p in range(n,N+1):
if self.smallest_prime_factor[p]==None:
self.smallest_prime_factor[p]=p
self.primes=[p for p in range(N+1) if p==self.smallest_prime_factor[p]]
def Factorize(self,N):
assert N>=1
factors=defaultdict(int)
if N<=len(self.smallest_prime_factor)-1:
while N!=1:
factors[self.smallest_prime_factor[N]]+=1
N//=self.smallest_prime_factor[N]
else:
for p in self.primes:
while N%p==0:
N//=p
factors[p]+=1
if N<p*p:
if N!=1:
factors[N]+=1
break
if N<=len(self.smallest_prime_factor)-1:
while N!=1:
factors[self.smallest_prime_factor[N]]+=1
N//=self.smallest_prime_factor[N]
break
else:
if N!=1:
factors[N]+=1
return factors
def Divisors(self,N):
assert N>0
divisors=[1]
for p,e in self.Factorize(N).items():
A=[1]
for _ in range(e):
A.append(A[-1]*p)
divisors=[i*j for i in divisors for j in A]
return divisors
def Is_Prime(self,N):
return N==self.smallest_prime_factor[N]
def Totient(self,N):
for p in self.Factorize(N).keys():
N*=p-1
N//=p
return N
def Mebius(self,N):
fact=self.Factorize(N)
for e in fact.values():
if e>=2:
return 0
else:
if len(fact)%2==0:
return 1
else:
return -1
N,P=map(int,readline().split())
edges=[]
Pr=Prime(N)
for n in range(1,N+1):
for p in Pr.Factorize(n).keys():
edges.append((n,p))
inf=1<<30
G=Graph(N+1,edges=edges,inf=inf)
ans=N+1-G.SIV_BFS(P,unweighted_dist=True).count(inf)
print(ans)
vwxyz