結果

問題 No.1195 数え上げを愛したい(文字列編)
ユーザー ecotteaecottea
提出日時 2022-01-09 03:39:55
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 393 ms / 3,000 ms
コード長 11,941 bytes
コンパイル時間 4,614 ms
コンパイル使用メモリ 244,904 KB
実行使用メモリ 13,480 KB
最終ジャッジ日時 2024-04-26 19:43:59
合計ジャッジ時間 10,883 ms
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 392 ms
13,356 KB
testcase_01 AC 391 ms
13,352 KB
testcase_02 AC 393 ms
13,480 KB
testcase_03 AC 38 ms
6,944 KB
testcase_04 AC 47 ms
6,944 KB
testcase_05 AC 15 ms
8,932 KB
testcase_06 AC 2 ms
6,944 KB
testcase_07 AC 2 ms
6,940 KB
testcase_08 AC 64 ms
6,944 KB
testcase_09 AC 375 ms
13,296 KB
testcase_10 AC 208 ms
8,524 KB
testcase_11 AC 339 ms
13,096 KB
testcase_12 AC 323 ms
12,884 KB
testcase_13 AC 272 ms
9,320 KB
testcase_14 AC 180 ms
8,744 KB
testcase_15 AC 201 ms
8,480 KB
testcase_16 AC 178 ms
8,268 KB
testcase_17 AC 68 ms
6,944 KB
testcase_18 AC 321 ms
12,896 KB
testcase_19 AC 318 ms
12,888 KB
testcase_20 AC 270 ms
9,344 KB
testcase_21 AC 339 ms
12,944 KB
testcase_22 AC 255 ms
8,888 KB
testcase_23 AC 2 ms
6,940 KB
testcase_24 AC 2 ms
6,940 KB
testcase_25 AC 2 ms
6,944 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#ifndef HIDDEN_IN_VISUAL_STUDIO // 折りたたみ用

// 警告の抑制
#define _CRT_SECURE_NO_WARNINGS

// ライブラリの読み込み
#include <bits/stdc++.h>
using namespace std;

// 型名の短縮
using ll = long long; // -2^63 ~ 2^63 = 9 * 10^18(int は -2^31 ~ 2^31 = 2 * 10^9)
using pii = pair<int, int>;	using pll = pair<ll, ll>;	using pil = pair<int, ll>;	using pli = pair<ll, int>;
using vi = vector<int>;		using vvi = vector<vi>;		using vvvi = vector<vvi>;
using vl = vector<ll>;		using vvl = vector<vl>;		using vvvl = vector<vvl>;
using vb = vector<bool>;	using vvb = vector<vb>;		using vvvb = vector<vvb>;
using vc = vector<char>;	using vvc = vector<vc>;		using vvvc = vector<vvc>;
using vd = vector<double>;	using vvd = vector<vd>;		using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;

// 定数の定義
const double PI = 3.14159265359;
const double DEG = PI / 180.; // θ [deg] = θ * DEG [rad]
const vi dx4 = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左)
const vi dy4 = { 0, 1, 0, -1 };
const vi dx8 = { 1, 1, 0, -1, -1, -1, 0, 1 }; // 8 近傍
const vi dy8 = { 0, 1, 1, 1, 0, -1, -1, -1 };
const int INF = 1001001001; const ll INFL = 2002002002002002002LL;
const double EPS = 1e-10; // 許容誤差に応じて調整

// 入出力高速化
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); } } fastIOtmp;

// 汎用マクロの定義
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define distance (int)distance
#define Yes(b) {cout << ((b) ? "Yes" : "No") << endl;}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順
#define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能)
#define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能)
#define repb(set, d) for(int set = 0; set < (1 << int(d)); ++set) // d ビット全探索(昇順)
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順)
#define repit(it, a) for(auto it = (a).begin(); it != (a).end(); ++it) // イテレータを回す(昇順)
#define repitr(it, a) for(auto it = (a).rbegin(); it != (a).rend(); ++it) // イテレータを回す(降順)
#define smod(n, m) ((((n) % (m)) + (m)) % (m)) // 非負mod
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去

// 汎用関数の定義
template <class T> inline ll pow(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す)
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す)

// 演算子オーバーロード
template <class T, class U> inline istream& operator>> (istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T, class U> inline ostream& operator<< (ostream& os, const pair<T, U>& p) { os << "(" << p.first << "," << p.second << ")"; return os; }
template <class T, class U, class V> inline istream& operator>> (istream& is, tuple<T, U, V>& t) { is >> get<0>(t) >> get<1>(t) >> get<2>(t); return is; }
template <class T, class U, class V> inline ostream& operator<< (ostream& os, const tuple<T, U, V>& t) { os << "(" << get<0>(t) << "," << get<1>(t) << "," << get<2>(t) << ")"; return os; }
template <class T, class U, class V, class W> inline istream& operator>> (istream& is, tuple<T, U, V, W>& t) { is >> get<0>(t) >> get<1>(t) >> get<2>(t) >> get<3>(t); return is; }
template <class T, class U, class V, class W> inline ostream& operator<< (ostream& os, const tuple<T, U, V, W>& t) { os << "(" << get<0>(t) << "," << get<1>(t) << "," << get<2>(t) << "," << get<3>(t) << ")"; return os; }
template <class T> inline istream& operator>> (istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline ostream& operator<< (ostream& os, const vector<T>& v) { repe(x, v) os << x << " "; return os; }
template <class T> inline ostream& operator<< (ostream& os, const list<T>& v) { repe(x, v) os << x << " "; return os; }
template <class T> inline ostream& operator<< (ostream& os, const set<T>& s) { repe(x, s) os << x << " "; return os; }
template <class T> inline ostream& operator<< (ostream& os, const set<T, greater<T>>& s) { repe(x, s) os << x << " "; return os; }
template <class T> inline ostream& operator<< (ostream& os, const unordered_set<T>& s) { repe(x, s) os << x << " "; return os; }
template <class T, class U> inline ostream& operator<< (ostream& os, const map<T, U>& m) { repe(p, m) os << p << " "; return os; }
template <class T, class U> inline ostream& operator<< (ostream& os, const unordered_map<T, U>& m) { repe(p, m) os << p << " "; return os; }
template <class T> inline ostream& operator<< (ostream& os, stack<T> s) { while (!s.empty()) { os << s.top() << " "; s.pop(); } return os; }
template <class T> inline ostream& operator<< (ostream& os, queue<T> q) { while (!q.empty()) { os << q.front() << " "; q.pop(); } return os; }
template <class T> inline ostream& operator<< (ostream& os, deque<T> q) { while (!q.empty()) { os << q.front() << " "; q.pop_front(); } return os; }
template <class T> inline ostream& operator<< (ostream& os, priority_queue<T> q) { while (!q.empty()) { os << q.top() << " "; q.pop(); } return os; }
template <class T> inline ostream& operator<< (ostream& os, priority_queue_rev<T> q) { while (!q.empty()) { os << q.top() << " "; q.pop(); } return os; }
template <class T> inline vector<T>& operator--(vector<T>& v) { rep(_i_, sz(v)) --v[_i_]; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { rep(_i_, sz(v)) ++v[_i_]; return v; }

// 手元環境(Visual Studio)
#ifdef _MSC_VER
#define popcount (int)__popcnt // 全ビット中の 1 の個数
#define popcountll (int)__popcnt64
inline int lsb(unsigned int n) { unsigned long i; _BitScanForward(&i, n); return i; } // 最下位ビットの位置(0-indexed)
inline int lsbll(unsigned long long n) { unsigned long i; _BitScanForward64(&i, n); return i; }
inline int msb(unsigned int n) { unsigned long i; _BitScanReverse(&i, n); return i; } // 最上位ビットの位置(0-indexed)
inline int msbll(unsigned long long n) { unsigned long i; _BitScanReverse64(&i, n); return i; }
template <class T> T gcd(T a, T b) { return b ? gcd(b, a % b) : a; }
#define dump(x) cout << "\033[1;36m" << (x) << "\033[0m" << endl;
#define dumps(x) cout << "\033[1;36m" << (x) << "\033[0m ";
#define dumpel(a) { int _i_ = -1; cout << "\033[1;36m"; repe(x, a) {cout << ++_i_ << ": " << x << endl;} cout << "\033[0m"; }
#define input_from_file(f) ifstream isTMP(f); cin.rdbuf(isTMP.rdbuf());
#define output_to_file(f) ofstream osTMP(f); cout.rdbuf(osTMP.rdbuf());
// 提出用(gcc)
#else
#define popcount (int)__builtin_popcount
#define popcountll (int)__builtin_popcountll
#define lsb __builtin_ctz
#define lsbll __builtin_ctzll
#define msb(n) (31 - __builtin_clz(n))
#define msbll(n) (63 - __builtin_clzll(n))
#define gcd __gcd
#define dump(x)
#define dumps(x)
#define dumpel(v)
#define input_from_file(f)
#define output_to_file(f)
#endif

#endif // 折りたたみ用


//-----------------AtCoder 専用-----------------
#include <atcoder/all>
using namespace atcoder;

//using mint = modint1000000007;
using mint = modint998244353;
//using mint = modint; // mint::set_mod(m);

template <class S, S(*op)(S, S), S(*e)()>ostream& operator<<(ostream& os, segtree<S, op, e> seg) { int n = seg.max_right(0, [](S x) {return true; }); rep(i, n) os << seg.get(i) << " "; return os; }
template <class S, S(*op)(S, S), S(*e)(), class F, S(*mp)(F, S), F(*cp)(F, F), F(*id)()>ostream& operator<<(ostream& os, lazy_segtree<S, op, e, F, mp, cp, id> seg) { int n = seg.max_right(0, [](S x) {return true; }); rep(i, n) os << seg.get(i) << " "; return os; }
istream& operator>> (istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
ostream& operator<< (ostream& os, const mint& x) { os << x.val(); return os; }
using vm = vector<mint>;	using vvm = vector<vm>;		using vvvm = vector<vvm>;
//----------------------------------------------


//【階乗と二項係数(mint利用)】
/*
* 十分大きな素数を法として,階乗,その逆数,二項係数を計算する.
*
* Factorial_mint(n) : O(n)
*	n! までの階乗とその逆数を前計算する.
*
* fac(n) : O(1)
*	n! を返す.
*
* fac_inv(n) : O(1)
*	1 / n! を返す.
*
* inv(n) : O(1)
*	1 / n を返す.
*
* permutation(n, r) : O(1)
*	順列の数 nPr を返す.
*
* binomial(n, r) : O(1)
*	二項係数 nCr を返す.
*
* multinomial(r) : O(|r|)
*	多項係数 nC[r] を返す.(n = Σr)
*/
struct Factorial_mint {
	// 階乗,階乗の逆数,逆数の値を保持するテーブル
	int n_;
	vm fac_, fac_inv_, inv_;

	// n! までの階乗とその逆数を前計算しておく.O(n)
	Factorial_mint(int n) : n_(n) {
		fac_ = vm(n + 1);
		fac_[0] = 1;
		repi(i, 1, n) fac_[i] = fac_[i - 1] * i;

		fac_inv_ = vm(n + 1);
		fac_inv_[n] = fac_[n].inv();
		repir(i, n - 1, 1) fac_inv_[i] = fac_inv_[i + 1] * (i + 1);
		fac_inv_[0] = 1;

		inv_ = vm(n + 1);
		repi(i, 1, n) inv_[i] = fac_[i - 1] * fac_inv_[i];
	}

	// n! を返す.O(1)
	mint fac(int n) const { assert(n <= n_); return fac_[n]; }

	// 1 / n! を返す.O(1)
	mint fac_inv(int n) const { assert(n <= n_); return fac_inv_[n]; }

	// 1 / n を返す.O(1)
	mint inv(int n) const { assert(n != 0 && n <= n_); return inv_[n]; }

	// 順列の数 nPr を返す.O(1)
	mint permutation(int n, int r) const {
		assert(n <= n_);

		if (r < 0 || n - r < 0) return 0;
		return fac_[n] * fac_inv_[n - r];
	}

	// 二項係数 nCr を返す.O(1)
	mint binomial(int n, int r) const {
		assert(n <= n_);

		if (r < 0 || n - r < 0) return 0;
		return fac_[n] * fac_inv_[r] * fac_inv_[n - r];
	}

	// 多項係数 nC[r] を返す.O(|r|)
	mint multinomial(const vi& r) const {
		int n = accumulate(all(r), 0);
		assert(n <= n_);

		mint res = fac_[n];
		repe(ri, r) res *= fac_inv_[ri];

		return res;
	}
};


void TLE(const string& s) {
	int n = sz(s);

	unordered_map<char, int> cnt;
	rep(i, n) {
		cnt[s[i]]++;
	}

	Factorial_mint fm(n);

	vvm dp(27, vm(n + 1));
	dp[0][0] = 1;

	rep(i, 26) {
		repi(j, 0, n) {
			int k_max = cnt['a' + i];

			repi(k, 0, k_max) {
				if (j + k >= n + 1) break;

				dp[i + 1][j + k] += dp[i][j] * fm.binomial(j + k, j);
			}
		}
	}
	dumpel(dp);

	mint res = accumulate(all(dp[26]), mint(0));
	res--;

	cout << res << endl;
}


void TLE2(const string& s) {
	int n = sz(s);

	unordered_map<char, int> cnt;
	rep(i, n) cnt[s[i]]++;

	Factorial_mint fm(n);

	vvm dp(27, vm(n + 1));
	dp[0][0] = 1;

	rep(i, 26) {
		int c = cnt['a' + i];

		repi(m, 0, n) {			
			repi(j, max(m - c, 0), m) {
				dp[i + 1][m] += dp[i][j] * fm.binomial(m, j);
			}
		}
	}
	dumpel(dp);

	mint res = accumulate(all(dp[26]), mint(0));
	res--;

	cout << res << endl;
}


int main() {
	//	input_from_file("input.txt");
	//	output_to_file("output.txt");

	string s;
	cin >> s;

//	TLE(s);
//	TLE2(s);
	
	int n = sz(s);

	unordered_map<char, int> cnt;
	rep(i, n) cnt[s[i]]++;

	Factorial_mint fm(n);

	vm dp = { 1 };
	dump(dp);

	repe(p, cnt) {
		int m = p.second;
		vm c(m + 1);
		repi(i, 0, m) c[i] = fm.fac_inv(i);
		dump(c);

		dp = convolution(dp, c);
		dump(dp);
	}

	mint res = 0;
	repi(i, 0, n) {
		res += dp[i] * fm.fac(i);
	}
	res--;

	cout << res << endl;
}
0