結果

問題 No.748 yuki国のお財布事情
ユーザー vwxyzvwxyz
提出日時 2022-01-14 03:05:38
言語 Python3
(3.12.2 + numpy 1.26.4 + scipy 1.12.0)
結果
AC  
実行時間 451 ms / 2,000 ms
コード長 8,368 bytes
コンパイル時間 287 ms
コンパイル使用メモリ 13,696 KB
実行使用メモリ 36,492 KB
最終ジャッジ日時 2024-11-18 08:40:45
合計ジャッジ時間 6,659 ms
ジャッジサーバーID
(参考情報)
judge1 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 29 ms
11,648 KB
testcase_01 AC 29 ms
11,648 KB
testcase_02 AC 29 ms
11,776 KB
testcase_03 AC 30 ms
11,776 KB
testcase_04 AC 32 ms
11,776 KB
testcase_05 AC 28 ms
11,648 KB
testcase_06 AC 29 ms
11,648 KB
testcase_07 AC 29 ms
11,648 KB
testcase_08 AC 29 ms
11,776 KB
testcase_09 AC 29 ms
11,776 KB
testcase_10 AC 30 ms
11,776 KB
testcase_11 AC 28 ms
11,776 KB
testcase_12 AC 29 ms
11,648 KB
testcase_13 AC 76 ms
13,952 KB
testcase_14 AC 107 ms
16,128 KB
testcase_15 AC 81 ms
14,464 KB
testcase_16 AC 160 ms
21,376 KB
testcase_17 AC 346 ms
28,988 KB
testcase_18 AC 378 ms
31,988 KB
testcase_19 AC 373 ms
36,492 KB
testcase_20 AC 329 ms
34,540 KB
testcase_21 AC 402 ms
31,520 KB
testcase_22 AC 31 ms
11,648 KB
testcase_23 AC 29 ms
11,648 KB
testcase_24 AC 30 ms
11,648 KB
testcase_25 AC 367 ms
25,832 KB
testcase_26 AC 451 ms
30,760 KB
testcase_27 AC 433 ms
30,152 KB
testcase_28 AC 244 ms
27,028 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

import sys
readline=sys.stdin.readline
from collections import defaultdict

class UnionFind:
    def __init__(self,n):
        self.n=n
        self.parents=[-1]*n

    def Find(self,x):
        stack=[]
        while self.parents[x]>=0:
            stack.append(x)
            x=self.parents[x]
        for y in stack:
            self.parents[y]=x
        return x

    def Union(self,x,y):
        x=self.Find(x)
        y=self.Find(y)
        if x==y:
            return
        if self.parents[x]>self.parents[y]:
            x,y=y,x
        self.parents[x]+=self.parents[y]
        self.parents[y]=x

    def Size(self,x):
        return -self.parents[self.Find(x)]

    def Same(self,x,y):
        return self.Find(x)==self.Find(y)

    def Members(self,x):
        root = self.Find(x)
        return [i for i in range(self.n) if self.Find(i)==root]

    def Roots(self):
        return [i for i, x in enumerate(self.parents) if x<0]

    def Group_Count(self):
        return len(self.Roots())

    def All_Group_Members(self):
        group_members = defaultdict(list)
        for member in range(self.n):
            group_members[self.Find(member)].append(member)
        return group_members

    def __str__(self):
        return '\n'.join(f'{r}: {m}' for r, m in self.All_Group_Members().items())

class Graph:
    def __init__(self,V,edges=False,graph=False,directed=False,weighted=False,inf=float("inf")):
        self.V=V
        self.directed=directed
        self.weighted=weighted
        self.inf=inf
        if not graph:
            self.edges=edges
            self.graph=[[] for i in range(self.V)]
            if weighted:
                for i,j,d in self.edges:
                    self.graph[i].append((j,d))
                    if not self.directed:
                        self.graph[j].append((i,d))
            else:
                for i,j in self.edges:
                    self.graph[i].append(j)
                    if not self.directed:
                        self.graph[j].append(i)
        else:
            self.graph=graph
            self.edges=[]
            for i in range(self.V):
                if self.weighted:
                    for j,d in self.graph[i]:
                        if self.directed or not self.directed and i<=j:
                            self.edges.append((i,j,d))
                else:
                    for j in self.graph[i]:
                        if self.directed or not self.directed and i<=j:
                            self.edges.append((i,j))

    def Kruskal(self):
        UF=UnionFind(self.V)
        sorted_edges=sorted(self.edges,key=lambda x:x[2])
        minimum_spnning_tree=[]
        for i,j,d in sorted_edges:
            if not UF.Same(i,j):
                UF.Union(i,j)
                minimum_spnning_tree.append((i,j,d))
        return minimum_spnning_tree

    def SIV_DFS(self,s,bipartite_graph=False,cycle_detection=False,directed_acyclic=False,euler_tour=False,linked_components=False,lowlink=False,parents=False,postorder=False,preorder=False,subtree_size=False,topological_sort=False,unweighted_dist=False,weighted_dist=False):
        seen=[False]*self.V
        finished=[False]*self.V
        if directed_acyclic or cycle_detection or topological_sort:
            dag=True
        if euler_tour:
            et=[]
        if linked_components:
            lc=[]
        if lowlink:
            order=[None]*self.V
            ll=[None]*self.V
            idx=0
        if parents or cycle_detection or lowlink or subtree_size:
            ps=[None]*self.V
        if postorder or topological_sort:
            post=[]
        if preorder:
            pre=[]
        if subtree_size:
            ss=[1]*self.V
        if unweighted_dist or bipartite_graph:
            uwd=[self.inf]*self.V
            uwd[s]=0
        if weighted_dist:
            wd=[self.inf]*self.V
            wd[s]=0
        stack=[(s,0)] if self.weighted else [s]
        while stack:
            if self.weighted:
                x,d=stack.pop()
            else:
                x=stack.pop()
            if not seen[x]:
                seen[x]=True
                stack.append((x,d) if self.weighted else x)
                if euler_tour:
                    et.append(x)
                if linked_components:
                    lc.append(x)
                if lowlink:
                    order[x]=idx
                    ll[x]=idx
                    idx+=1
                if preorder:
                    pre.append(x)
                for y in self.graph[x]:
                    if self.weighted:
                        y,d=y
                    if not seen[y]:
                        stack.append((y,d) if self.weighted else y)
                        if parents or cycle_detection or lowlink or subtree_size:
                            ps[y]=x
                        if unweighted_dist or bipartite_graph:
                            uwd[y]=uwd[x]+1
                        if weighted_dist:
                            wd[y]=wd[x]+d
                    elif not finished[y]:
                        if (directed_acyclic or cycle_detection or topological_sort) and dag:
                            dag=False
                            if cycle_detection:
                                cd=(y,x)
            elif not finished[x]:
                finished[x]=True
                if euler_tour:
                    et.append(~x)
                if lowlink:
                    bl=True
                    for y in self.graph[x]:
                        if self.weighted:
                            y,d=y
                        if ps[x]==y and bl:
                            bl=False
                            continue
                        ll[x]=min(ll[x],order[y])
                    if x!=s:
                        ll[ps[x]]=min(ll[ps[x]],ll[x])
                if postorder or topological_sort:
                    post.append(x)
                if subtree_size:
                    for y in self.graph[x]:
                        if self.weighted:
                            y,d=y
                        if y==ps[x]:
                            continue
                        ss[x]+=ss[y]
        if bipartite_graph:
            bg=[[],[]]
            for tpl in self.edges:
                x,y=tpl[:2] if self.weighted else tpl
                if uwd[x]==self.inf or uwd[y]==self.inf:
                    continue
                if not uwd[x]%2^uwd[y]%2:
                    bg=False
                    break
            else:
                for x in range(self.V):
                    if uwd[x]==self.inf:
                        continue
                    bg[uwd[x]%2].append(x)
        retu=()
        if bipartite_graph:
            retu+=(bg,)
        if cycle_detection:
            if dag:
                cd=[]
            else:
                y,x=cd
                cd=self.Route_Restoration(y,x,ps)
            retu+=(cd,)
        if directed_acyclic:
            retu+=(dag,)
        if euler_tour:
            retu+=(et,)
        if linked_components:
            retu+=(lc,)
        if lowlink:
            retu=(ll,)
        if parents:
            retu+=(ps,)
        if postorder:
            retu+=(post,)
        if preorder:
            retu+=(pre,)
        if subtree_size:
            retu+=(ss,)
        if topological_sort:
            if dag:
                tp_sort=post[::-1]
            else:
                tp_sort=[]
            retu+=(tp_sort,)
        if unweighted_dist:
            retu+=(uwd,)
        if weighted_dist:
            retu+=(wd,)
        if len(retu)==1:
            retu=retu[0]
        return retu

    def Route_Restoration(self,s,g,parents):
        route=[g]
        while s!=g:
            if parents[g]==None:
                route=[]
                break
            g=parents[g]
            route.append(g)
        route=route[::-1]
        return route

N,M,K=map(int,readline().split())
edges=[]
for _ in range(M):
    a,b,c=map(int,readline().split())
    a-=1;b-=1
    edges.append((a,b,c))
C={int(readline())-1 for i in range(K)}
UF=UnionFind(N)
for i in C:
    a,b,c=edges[i]
    UF.Union(a,b)
edges=[edges[i] for i in range(M) if not i in C]
edges.sort(key=lambda tpl:tpl[2])
ans=0
for a,b,c in edges:
    if UF.Same(a,b):
        ans+=c
    else:
        UF.Union(a,b)
print(ans)
0