結果
問題 | No.1808 Fullgold Alchemist |
ユーザー | daut-dlang |
提出日時 | 2022-01-14 21:36:18 |
言語 | D (dmd 2.106.1) |
結果 |
AC
|
実行時間 | 69 ms / 2,000 ms |
コード長 | 2,726 bytes |
コンパイル時間 | 863 ms |
コンパイル使用メモリ | 123,468 KB |
実行使用メモリ | 35,096 KB |
最終ジャッジ日時 | 2024-06-22 14:02:51 |
合計ジャッジ時間 | 3,632 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
6,816 KB |
testcase_01 | AC | 1 ms
6,944 KB |
testcase_02 | AC | 1 ms
6,944 KB |
testcase_03 | AC | 1 ms
6,944 KB |
testcase_04 | AC | 1 ms
6,944 KB |
testcase_05 | AC | 30 ms
21,844 KB |
testcase_06 | AC | 42 ms
34,796 KB |
testcase_07 | AC | 41 ms
34,008 KB |
testcase_08 | AC | 69 ms
34,480 KB |
testcase_09 | AC | 68 ms
34,368 KB |
testcase_10 | AC | 68 ms
34,760 KB |
testcase_11 | AC | 61 ms
34,476 KB |
testcase_12 | AC | 45 ms
34,792 KB |
testcase_13 | AC | 47 ms
34,128 KB |
testcase_14 | AC | 48 ms
35,096 KB |
testcase_15 | AC | 50 ms
34,420 KB |
testcase_16 | AC | 2 ms
6,940 KB |
testcase_17 | AC | 1 ms
6,944 KB |
testcase_18 | AC | 8 ms
6,940 KB |
testcase_19 | AC | 1 ms
6,940 KB |
testcase_20 | AC | 11 ms
6,944 KB |
testcase_21 | AC | 6 ms
6,940 KB |
testcase_22 | AC | 1 ms
6,940 KB |
testcase_23 | AC | 5 ms
6,940 KB |
testcase_24 | AC | 3 ms
6,940 KB |
testcase_25 | AC | 3 ms
6,944 KB |
testcase_26 | AC | 8 ms
6,944 KB |
testcase_27 | AC | 11 ms
6,944 KB |
testcase_28 | AC | 53 ms
22,860 KB |
testcase_29 | AC | 17 ms
13,172 KB |
testcase_30 | AC | 16 ms
13,128 KB |
testcase_31 | AC | 44 ms
22,956 KB |
testcase_32 | AC | 25 ms
12,572 KB |
testcase_33 | AC | 36 ms
21,756 KB |
testcase_34 | AC | 52 ms
22,568 KB |
testcase_35 | AC | 35 ms
22,008 KB |
ソースコード
import std.stdio, std.conv, std.functional, std.string; import std.algorithm, std.array, std.container, std.range, std.typecons; import std.bigint, std.numeric, std.math, std.random; import core.bitop; string FMT_F = "%.10f"; static File _f; void file_io(string fn) { _f = File(fn, "r"); } static string[] s_rd; T _RD(T = long)() { while(!s_rd.length) s_rd = readln.chomp.split; string res = s_rd[0]; s_rd.popFront; return res.to!T; } T _RD(T = long)(File f) { while(!s_rd.length) s_rd = f.readln.chomp.split; string res = s_rd[0]; s_rd.popFront; return res.to!T; } T[] _RDA(T = long)(T fix = 0) { auto r = readln.chomp.split.to!(T[]); r[] += fix; return r; } T[] _RDA(T = long)(File f, T fix = 0) { auto r = f.readln.chomp.split.to!(T[]); r[] += fix; return r; } T RD(T = long)() { if (_f.isOpen) return _RD!T(_f); else return _RD!T; } T[] RDA(T = long)(T fix = 0) { if (_f.isOpen) return _RDA!T(_f, fix); else return _RDA!T(fix); } size_t[] MAKE_IDX(alias less = "a < b", Range)(Range range) { auto idx = new size_t[](range.length); makeIndex!(less)(range, idx); return idx;} size_t MIN_POS(alias less = "a < b", Range)(Range range) { auto r = minPos!(less)(range); return range.length - r.length; } void chmin(T)(ref T x, T y) { x = min(x, y); } void chmax(T)(ref T x, T y) { x = max(x, y); } bool inside(T)(T x, T b, T e) { return x >= b && x < e; } T lcm(T)(T x, T y) { return x * (y / gcd(x, y)); } double euDist(T)(T[] a, T[] b) { auto c = a.dup; c[] -= b[]; c[] *= c[]; return sqrt(cast(double)c.sum); } double[] rotate(double[] vec, double rad) { return [cos(rad)*vec[0] - sin(rad)*vec[1], sin(rad)*vec[0] + cos(rad)*vec[1]]; } double norm(double[] vec) { return sqrt(reduce!((a,b)=>a+b*b)(0.0, vec)); } double dotProd(double[] a, double[] b) { auto r = a.dup; r[] *= b[]; return r.sum; } //long mod = 10^^9 + 7; long mod = 998_244_353; //long mod = 1_000_003; void moda(ref long x, long y) { x = (x + y) % mod; } void mods(ref long x, long y) { x = ((x + mod) - (y % mod)) % mod; } void modm(ref long x, long y) { x = (x * y) % mod; } void modpow(ref long x, long y) { if (!y) { x = 1; return; } auto t = x; x.modpow(y>>1); x.modm(x); if (y&1) x.modm(t); } void modd(ref long x, long y) { y.modpow(mod - 2); x.modm(y); } T binarySearch(alias pred, T)(T ok, T ng) { while (abs(ok-ng) > 1) { auto mid = (ok+ng)/2; if (unaryFun!pred(mid)) ok = mid; else ng = mid; } return ok; } void main() { auto N = RD; auto M = RD; auto A = RDA; bool f(long x) { auto arr = A.dup; foreach (i; 0..N-1) { if (arr[i] < x) return false; arr[i+1] += arr[i]-x; arr[i] = x; } return arr[$-1] >= x; } auto ans = binarySearch!(f)(0, 10^^9+1) / M; writeln(ans); stdout.flush; debug readln; }