結果
| 問題 |
No.1812 Uribo Road
|
| コンテスト | |
| ユーザー |
hitonanode
|
| 提出日時 | 2022-01-14 21:46:51 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 88 ms / 5,000 ms |
| コード長 | 14,572 bytes |
| コンパイル時間 | 3,365 ms |
| コンパイル使用メモリ | 218,756 KB |
| 実行使用メモリ | 5,760 KB |
| 最終ジャッジ日時 | 2024-11-20 09:16:03 |
| 合計ジャッジ時間 | 4,234 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 30 |
コンパイルメッセージ
main.cpp: In function 'int main()':
main.cpp:363:16: warning: ignoring return value of 'constexpr std::vector<_Tp, _Alloc>::reference std::vector<_Tp, _Alloc>::operator[](size_type) [with _Tp = long long int; _Alloc = std::allocator<long long int>; reference = long long int&; size_type = long unsigned int]', declared with attribute 'nodiscard' [-Wunused-result]
363 | dbg(dp[0][0]);
| ^
main.cpp:72:17: note: in definition of macro 'dbg'
72 | #define dbg(x) (x)
| ^
In file included from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/vector:64,
from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/functional:62,
from main.cpp:11:
/home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/bits/stl_vector.h:1121:7: note: declared here
1121 | operator[](size_type __n) _GLIBCXX_NOEXCEPT
| ^~~~~~~~
ソースコード
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <chrono>
#include <cmath>
#include <complex>
#include <deque>
#include <forward_list>
#include <fstream>
#include <functional>
#include <iomanip>
#include <ios>
#include <iostream>
#include <limits>
#include <list>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <tuple>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
using lint = long long;
using pint = pair<int, int>;
using plint = pair<lint, lint>;
struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_;
#define ALL(x) (x).begin(), (x).end()
#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)
#define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
template <typename T, typename V>
void ndarray(vector<T>& vec, const V& val, int len) { vec.assign(len, val); }
template <typename T, typename V, typename... Args> void ndarray(vector<T>& vec, const V& val, int len, Args... args) { vec.resize(len), for_each(begin(vec), end(vec), [&](T& v) { ndarray(v, val, args...); }); }
template <typename T> bool chmax(T &m, const T q) { return m < q ? (m = q, true) : false; }
template <typename T> bool chmin(T &m, const T q) { return m > q ? (m = q, true) : false; }
int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); }
template <typename T1, typename T2> pair<T1, T2> operator+(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first + r.first, l.second + r.second); }
template <typename T1, typename T2> pair<T1, T2> operator-(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first - r.first, l.second - r.second); }
template <typename T> vector<T> sort_unique(vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; }
template <typename T> int arglb(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); }
template <typename T> int argub(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::upper_bound(v.begin(), v.end(), x)); }
template <typename T> istream &operator>>(istream &is, vector<T> &vec) { for (auto &v : vec) is >> v; return is; }
template <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <typename T, size_t sz> ostream &operator<<(ostream &os, const array<T, sz> &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']'; return os; }
#if __cplusplus >= 201703L
template <typename... T> istream &operator>>(istream &is, tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; }
template <typename... T> ostream &operator<<(ostream &os, const tuple<T...> &tpl) { os << '('; std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os << ')'; }
#endif
template <typename T> ostream &operator<<(ostream &os, const deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <typename T> ostream &operator<<(ostream &os, const set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T, typename TH> ostream &operator<<(ostream &os, const unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T> ostream &operator<<(ostream &os, const multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T> ostream &operator<<(ostream &os, const unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &pa) { os << '(' << pa.first << ',' << pa.second << ')'; return os; }
template <typename TK, typename TV> ostream &operator<<(ostream &os, const map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
template <typename TK, typename TV, typename TH> ostream &operator<<(ostream &os, const unordered_map<TK, TV, TH> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
#ifdef HITONANODE_LOCAL
const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m";
#define dbg(x) cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << endl
#define dbgif(cond, x) ((cond) ? cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << endl : cerr)
#else
#define dbg(x) (x)
#define dbgif(cond, x) 0
#endif
template <typename T, T INF = std::numeric_limits<T>::max() / 2, int INVALID = -1>
struct ShortestPath {
int V, E;
bool single_positive_weight;
T wmin, wmax;
std::vector<std::vector<std::pair<int, T>>> to;
ShortestPath(int V = 0) : V(V), E(0), single_positive_weight(true), wmin(0), wmax(0), to(V) {}
void add_edge(int s, int t, T w) {
assert(0 <= s and s < V);
assert(0 <= t and t < V);
to[s].emplace_back(t, w);
E++;
if (w > 0 and wmax > 0 and wmax != w) single_positive_weight = false;
wmin = std::min(wmin, w);
wmax = std::max(wmax, w);
}
std::vector<T> dist;
std::vector<int> prev;
// Dijkstra algorithm
// Complexity: O(E log E)
using Pque = std::priority_queue<std::pair<T, int>, std::vector<std::pair<T, int>>,
std::greater<std::pair<T, int>>>;
template <class Heap = Pque> void Dijkstra(int s) {
assert(0 <= s and s < V);
dist.assign(V, INF);
dist[s] = 0;
prev.assign(V, INVALID);
Heap pq;
pq.emplace(0, s);
while (!pq.empty()) {
T d;
int v;
std::tie(d, v) = pq.top();
pq.pop();
if (dist[v] < d) continue;
for (auto nx : to[v]) {
T dnx = d + nx.second;
if (dist[nx.first] > dnx) {
dist[nx.first] = dnx, prev[nx.first] = v;
pq.emplace(dnx, nx.first);
}
}
}
}
// Dijkstra algorithm, O(V^2 + E)
void DijkstraVquad(int s) {
assert(0 <= s and s < V);
dist.assign(V, INF);
dist[s] = 0;
prev.assign(V, INVALID);
std::vector<char> fixed(V, false);
while (true) {
int r = INVALID;
T dr = INF;
for (int i = 0; i < V; i++) {
if (!fixed[i] and dist[i] < dr) r = i, dr = dist[i];
}
if (r == INVALID) break;
fixed[r] = true;
int nxt;
T dx;
for (auto p : to[r]) {
std::tie(nxt, dx) = p;
if (dist[nxt] > dist[r] + dx) dist[nxt] = dist[r] + dx, prev[nxt] = r;
}
}
}
// Bellman-Ford algorithm
// Complexity: O(VE)
bool BellmanFord(int s, int nb_loop) {
assert(0 <= s and s < V);
dist.assign(V, INF), prev.assign(V, INVALID);
dist[s] = 0;
for (int l = 0; l < nb_loop; l++) {
bool upd = false;
for (int v = 0; v < V; v++) {
if (dist[v] == INF) continue;
for (auto nx : to[v]) {
T dnx = dist[v] + nx.second;
if (dist[nx.first] > dnx) dist[nx.first] = dnx, prev[nx.first] = v, upd = true;
}
}
if (!upd) return true;
}
return false;
}
// Bellman-ford algorithm using queue (deque)
// Complexity: O(VE)
// Requirement: no negative loop
void SPFA(int s) {
assert(0 <= s and s < V);
dist.assign(V, INF);
prev.assign(V, INVALID);
std::deque<int> q;
std::vector<char> in_queue(V);
dist[s] = 0;
q.push_back(s), in_queue[s] = 1;
while (!q.empty()) {
int now = q.front();
q.pop_front(), in_queue[now] = 0;
for (auto nx : to[now]) {
T dnx = dist[now] + nx.second;
int nxt = nx.first;
if (dist[nxt] > dnx) {
dist[nxt] = dnx;
if (!in_queue[nxt]) {
if (q.size() and dnx < dist[q.front()]) { // Small label first optimization
q.push_front(nxt);
} else {
q.push_back(nxt);
}
prev[nxt] = now, in_queue[nxt] = 1;
}
}
}
}
}
void ZeroOneBFS(int s) {
assert(0 <= s and s < V);
dist.assign(V, INF), prev.assign(V, INVALID);
dist[s] = 0;
std::deque<int> que;
que.push_back(s);
while (!que.empty()) {
int v = que.front();
que.pop_front();
for (auto nx : to[v]) {
T dnx = dist[v] + nx.second;
if (dist[nx.first] > dnx) {
dist[nx.first] = dnx, prev[nx.first] = v;
if (nx.second) {
que.push_back(nx.first);
} else {
que.push_front(nx.first);
}
}
}
}
}
bool dag_solver(int s) {
assert(0 <= s and s < V);
std::vector<int> indeg(V, 0);
std::queue<int> que;
que.push(s);
while (que.size()) {
int now = que.front();
que.pop();
for (auto nx : to[now]) {
indeg[nx.first]++;
if (indeg[nx.first] == 1) que.push(nx.first);
}
}
dist.assign(V, INF), prev.assign(V, INVALID);
dist[s] = 0;
que.push(s);
while (que.size()) {
int now = que.front();
que.pop();
for (auto nx : to[now]) {
indeg[nx.first]--;
if (dist[nx.first] > dist[now] + nx.second)
dist[nx.first] = dist[now] + nx.second, prev[nx.first] = now;
if (indeg[nx.first] == 0) que.push(nx.first);
}
}
return *max_element(indeg.begin(), indeg.end()) == 0;
}
// Retrieve a sequence of vertex ids that represents shortest path [s, ..., goal]
// If not reachable to goal, return {}
std::vector<int> retrieve_path(int goal) const {
assert(int(prev.size()) == V);
assert(0 <= goal and goal < V);
if (dist[goal] == INF) return {};
std::vector<int> ret{goal};
while (prev[goal] != INVALID) {
goal = prev[goal];
ret.push_back(goal);
}
std::reverse(ret.begin(), ret.end());
return ret;
}
void solve(int s) {
if (wmin >= 0) {
if (single_positive_weight) {
ZeroOneBFS(s);
} else {
if ((long long)V * V < (E << 4)) {
DijkstraVquad(s);
} else {
Dijkstra(s);
}
}
} else {
BellmanFord(s, V);
}
}
// Warshall-Floyd algorithm
// Complexity: O(E + V^3)
std::vector<std::vector<T>> dist2d;
void WarshallFloyd() {
dist2d.assign(V, std::vector<T>(V, INF));
for (int i = 0; i < V; i++) {
dist2d[i][i] = 0;
for (auto p : to[i]) dist2d[i][p.first] = std::min(dist2d[i][p.first], p.second);
}
for (int k = 0; k < V; k++) {
for (int i = 0; i < V; i++) {
if (dist2d[i][k] == INF) continue;
for (int j = 0; j < V; j++) {
if (dist2d[k][j] == INF) continue;
dist2d[i][j] = std::min(dist2d[i][j], dist2d[i][k] + dist2d[k][j]);
}
}
}
}
void dump_graphviz(std::string filename = "shortest_path") const {
std::ofstream ss(filename + ".DOT");
ss << "digraph{\n";
for (int i = 0; i < V; i++) {
for (const auto &e : to[i])
ss << i << "->" << e.first << "[label=" << e.second << "];\n";
}
ss << "}\n";
ss.close();
return;
}
};
int main() {
int N, M, K;
cin >> N >> M >> K;
vector<int> R(K);
cin >> R;
for (auto &x : R) --x;
vector<tuple<int, int, int>> edges;
ShortestPath<lint> graph(N);
REP(e, M) {
int a, b, c;
cin >> a >> b >> c;
--a, --b;
edges.emplace_back(a, b, c);
graph.add_edge(a, b, c);
graph.add_edge(b, a, c);
}
vector<int> relps{0, N - 1};
lint bias = 0;
for (auto r : R) {
auto [a, b, c] = edges[r];
relps.emplace_back(a);
relps.emplace_back(b);
bias += c;
}
relps = sort_unique(relps);
const int V = relps.size();
assert(relps.back() == N - 1);
vector<vector<lint>> dists;
for (auto r : relps) {
graph.solve(r);
dists.push_back({});
for (auto s : relps) dists.back().push_back(graph.dist[s]);
}
vector<pint> vs;
for (auto r : R) {
auto [a, b, c] = edges[r];
vs.emplace_back(arglb(relps, a), arglb(relps, b));
}
constexpr lint INF = 1LL << 60;
vector dp(V, vector<lint>(1 << K, INF));
dp[0][0] = 0;
dbg(dp[0][0]);
REP(s, 1 << K) {
REP(now, V) {
lint curr = dp[now][s];
if (curr == INF) continue;
REP(nxte, K) {
if ((s >> nxte) & 1) continue;
auto [a, b] = vs[nxte];
REP(t, 2) {
chmin(dp[b][s + (1 << nxte)], curr + dists[now][a]);
swap(a, b);
}
}
}
}
lint ret = INF;
REP(now, V) chmin(ret, dists[now].back() + dp[now].back());
cout << ret + bias << '\n';
}
hitonanode