結果
問題 | No.1810 RGB Biscuits |
ユーザー |
![]() |
提出日時 | 2022-01-14 22:30:24 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 4 ms / 2,000 ms |
コード長 | 4,645 bytes |
コンパイル時間 | 4,217 ms |
コンパイル使用メモリ | 252,892 KB |
最終ジャッジ日時 | 2025-01-27 11:49:15 |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 20 |
ソースコード
#include <bits/stdc++.h>#include <atcoder/all>using namespace std;using int64 = long long;const int mod = 1e9 + 7;// const int mod = 998244353;const int64 infll = (1LL << 62) - 1;const int inf = (1 << 30) - 1;struct IoSetup {IoSetup() {cin.tie(nullptr);ios::sync_with_stdio(false);cout << fixed << setprecision(10);cerr << fixed << setprecision(10);}} iosetup;template< typename T1, typename T2 >ostream &operator<<(ostream &os, const pair< T1, T2 > &p) {os << p.first << " " << p.second;return os;}template< typename T1, typename T2 >istream &operator>>(istream &is, pair< T1, T2 > &p) {is >> p.first >> p.second;return is;}template< typename T >ostream &operator<<(ostream &os, const vector< T > &v) {for(int i = 0; i < (int) v.size(); i++) {os << v[i] << (i + 1 != v.size() ? " " : "");}return os;}template< typename T >istream &operator>>(istream &is, vector< T > &v) {for(T &in: v) is >> in;return is;}template< typename T1, typename T2 >inline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }template< typename T1, typename T2 >inline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }template< typename T = int64 >vector< T > make_v(size_t a) {return vector< T >(a);}template< typename T, typename... Ts >auto make_v(size_t a, Ts... ts) {return vector< decltype(make_v< T >(ts...)) >(a, make_v< T >(ts...));}template< typename T, typename V >typename enable_if< is_class< T >::value == 0 >::type fill_v(T &t, const V &v) {t = v;}template< typename T, typename V >typename enable_if< is_class< T >::value != 0 >::type fill_v(T &t, const V &v) {for(auto &e: t) fill_v(e, v);}template< typename F >struct FixPoint : F {FixPoint(F &&f) : F(forward< F >(f)) {}template< typename... Args >decltype(auto) operator()(Args &&... args) const {return F::operator()(*this, forward< Args >(args)...);}};template< typename F >inline decltype(auto) MFP(F &&f) {return FixPoint< F >{forward< F >(f)};}/*** @brief Square-Matrix(正方行列)*/template< class T, size_t N >struct SquareMatrix {array< array< T, N >, N > A;SquareMatrix() : A{{}} {}size_t size() const { return N; }inline const array< T, N > &operator[](int k) const {return (A.at(k));}inline array< T, N > &operator[](int k) {return (A.at(k));}static SquareMatrix add_identity() {return SquareMatrix();}static SquareMatrix mul_identity() {SquareMatrix mat;for(size_t i = 0; i < N; i++) mat[i][i] = 1;return mat;}SquareMatrix &operator+=(const SquareMatrix &B) {for(size_t i = 0; i < N; i++) {for(size_t j = 0; j < N; j++) {(*this)[i][j] += B[i][j];}}return *this;}SquareMatrix &operator-=(const SquareMatrix &B) {for(size_t i = 0; i < N; i++) {for(size_t j = 0; j < N; j++) {(*this)[i][j] -= B[i][j];}}return *this;}SquareMatrix &operator*=(const SquareMatrix &B) {array< array< T, N >, N > C;for(size_t i = 0; i < N; i++) {for(size_t j = 0; j < N; j++) {for(size_t k = 0; k < N; k++) {C[i][j] = (C[i][j] + (*this)[i][k] * B[k][j]);}}}A.swap(C);return (*this);}SquareMatrix &operator^=(uint64_t k) {SquareMatrix B = SquareMatrix::mul_identity();while(k > 0) {if(k & 1) B *= *this;*this *= *this;k >>= 1LL;}A.swap(B.A);return *this;}SquareMatrix operator+(const SquareMatrix &B) const {return SquareMatrix(*this) += B;}SquareMatrix operator-(const SquareMatrix &B) const {return SquareMatrix(*this) -= B;}SquareMatrix operator*(const SquareMatrix &B) const {return SquareMatrix(*this) *= B;}SquareMatrix operator^(uint64_t k) const {return SquareMatrix(*this) ^= k;}friend ostream &operator<<(ostream &os, SquareMatrix &p) {for(int i = 0; i < N; i++) {os << "[";for(int j = 0; j < N; j++) {os << p[i][j] << (j + 1 == N ? "]\n" : ",");}}return os;}};using mint = atcoder::modint1000000007;int main() {int A, B, N;cin >> A >> B >> N;while(N--) {int64 T;cin >> T;SquareMatrix< mint, 2 > dp;// (X,Y,0)->(X,Y,Z=AX+BY)->(AX+BY,X)dp[0][0] = A;dp[1][0] = B;dp[0][1] = 1;dp ^= T / 2;auto S = dp[0][0] + dp[0][1] + dp[1][0] + dp[1][1].val();if(T & 1) {S += (dp[0][0] + dp[1][0].val()) * A + (dp[0][1] + dp[1][1].val()) * B;}cout << S.val() << "\n";}}