結果

問題 No.1812 Uribo Road
ユーザー kaikeykaikey
提出日時 2022-01-14 22:30:34
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 127 ms / 5,000 ms
コード長 5,972 bytes
コンパイル時間 3,589 ms
コンパイル使用メモリ 241,348 KB
実行使用メモリ 6,820 KB
最終ジャッジ日時 2024-11-20 12:08:42
合計ジャッジ時間 5,577 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 2 ms
6,816 KB
testcase_02 AC 2 ms
6,816 KB
testcase_03 AC 11 ms
6,820 KB
testcase_04 AC 3 ms
6,816 KB
testcase_05 AC 2 ms
6,816 KB
testcase_06 AC 2 ms
6,820 KB
testcase_07 AC 3 ms
6,816 KB
testcase_08 AC 3 ms
6,816 KB
testcase_09 AC 5 ms
6,820 KB
testcase_10 AC 3 ms
6,820 KB
testcase_11 AC 3 ms
6,816 KB
testcase_12 AC 61 ms
6,816 KB
testcase_13 AC 39 ms
6,816 KB
testcase_14 AC 35 ms
6,816 KB
testcase_15 AC 38 ms
6,816 KB
testcase_16 AC 32 ms
6,816 KB
testcase_17 AC 98 ms
6,816 KB
testcase_18 AC 38 ms
6,816 KB
testcase_19 AC 126 ms
6,820 KB
testcase_20 AC 127 ms
6,820 KB
testcase_21 AC 106 ms
6,820 KB
testcase_22 AC 87 ms
6,816 KB
testcase_23 AC 7 ms
6,816 KB
testcase_24 AC 2 ms
6,816 KB
testcase_25 AC 16 ms
6,816 KB
testcase_26 AC 3 ms
6,816 KB
testcase_27 AC 23 ms
6,820 KB
testcase_28 AC 28 ms
6,820 KB
testcase_29 AC 2 ms
6,820 KB
testcase_30 AC 5 ms
6,816 KB
testcase_31 AC 74 ms
6,816 KB
testcase_32 AC 4 ms
6,816 KB
testcase_33 AC 29 ms
6,820 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include "bits/stdc++.h"
#include <random>
#include <chrono>
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#define ALL(x) (x).begin(), (x).end()
#define RALL(x) (x).rbegin(), (x).rend()
#define SZ(x) ((lint)(x).size())
#define FOR(i, begin, end) for(lint i=(begin),i##_end_=(end);i<i##_end_;++i)
#define IFOR(i, begin, end) for(lint i=(end)-1,i##_begin_=(begin);i>=i##_begin_;--i)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
#define endk '\n'
using namespace std; typedef unsigned long long _ulong; typedef long long int lint; typedef long double ld; typedef pair<lint, lint> plint; typedef pair<ld, ld> pld;
struct fast_ios { fast_ios() { cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(10); }; } fast_ios_;
template<class T> auto add = [](T a, T b) -> T { return a + b; };
template<class T> auto mul = [](T a, T b) -> T { return a * b; };
template<class T> auto f_max = [](T a, T b) -> T { return max(a, b); };
template<class T> auto f_min = [](T a, T b) -> T { return min(a, b); };
template<class T> using V = vector<T>;
using Vl = V<lint>; using VVl = V<Vl>; using VVVl = V<V<Vl>>;
template< typename T > ostream& operator<<(ostream& os, const vector< T >& v) {
    for (int i = 0; i < (int)v.size(); i++) os << v[i] << (i + 1 != v.size() ? " " : "");
    return os;
}
template< typename T >istream& operator>>(istream& is, vector< T >& v) {
    for (T& in : v) is >> in;
    return is;
}
template<class T> bool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; }
template<class T> bool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; }
template <class T>
T div_floor(T a, T b) {
    if (b < 0) a *= -1, b *= -1;
    return a >= 0 ? a / b : (a + 1) / b - 1;
}
template <class T>
T div_ceil(T a, T b) {
    if (b < 0) a *= -1, b *= -1;
    return a > 0 ? (a - 1) / b + 1 : a / b;
}
template <class F> struct rec {
    F f;
    rec(F&& f_) : f(std::forward<F>(f_)) {}
    template <class... Args> auto operator()(Args &&... args) const {
        return f(*this, std::forward<Args>(args)...);
    }
};
lint gcd(lint a, lint b) { if (b == 0) return a; else return gcd(b, a % b); }
lint digit(lint a) { return (lint)log10(a); }
lint e_dist(plint a, plint b) { return abs(a.first - b.first) * abs(a.first - b.first) + abs(a.second - b.second) * abs(a.second - b.second); }
lint m_dist(plint a, plint b) { return abs(a.first - b.first) + abs(a.second - b.second); }
bool check_overflow(lint a, lint b, lint limit) { if (b == 0) return false; return a >= limit / b; } // a * b > c => true
void Worshall_Floyd(VVl& g) { REP(k, SZ(g)) REP(i, SZ(g)) REP(j, SZ(g)) chmin(g[i][j], g[i][k] + g[k][j]); }
const lint MOD1000000007 = 1000000007, MOD998244353 = 998244353, INF = 2e18;
lint dx[8] = { 0, -1, 0, 1, 1, -1, 1, -1 }, dy[8] = { -1, 0, 1, 0, -1, -1, 1, 1 };
bool YN(bool flag) { cout << (flag ? "YES" : "NO") << endk; return flag; } bool yn(bool flag) { cout << (flag ? "Yes" : "No") << endk; return flag; }
struct Edge {
    lint from, to;
    lint cost;
    Edge() {

    }
    Edge(lint u, lint v, lint c) {
        cost = c;
        from = u;
        to = v;
    }
    bool operator<(const Edge& e) const {
        return cost < e.cost;
    }
};
struct WeightedEdge {
    lint to;
    lint cost;
    WeightedEdge(lint v, lint c = 1) {
        to = v;
        cost = c;
    }
    bool operator<(const WeightedEdge& e) const {
        return cost < e.cost;
    }
};
using WeightedGraph = V<V<WeightedEdge>>;
typedef pair<plint, lint> tlint;
typedef pair<ld, ld> pld;
typedef pair<lint, tlint> qlint;
typedef pair<string, lint> valstr;
typedef pair<Vl, lint> valv;

Vl Dijkstra(WeightedGraph& g, int s) {
    Vl dist(SZ(g), INF);
    deque<bool> visited(SZ(g), false);
    priority_queue<plint> que;
    que.push({ 0, s });
    dist[s] = 0;
    while (!que.empty()) {
        plint curr = que.top(); que.pop();
        if (visited[curr.second]) continue;
        visited[curr.second] = true;
        if (dist[curr.second] < curr.first) continue;
        for (auto nxt : g[curr.second]) {
            if (visited[nxt.to]) continue;
            if (dist[nxt.to] > dist[curr.second] + nxt.cost) {
                dist[nxt.to] = dist[curr.second] + nxt.cost;
                que.emplace(-dist[nxt.to], nxt.to);
            }
        }
    }
    return dist;
}

int main() {
	lint N, M, K;
    cin >> N >> M >> K;
    Vl arr(K);
    cin >> arr;
    lint base_sum = 0;
    set<lint> st;
    REP(i, K) st.insert(arr[i] - 1);

    WeightedGraph g(N);
    V<plint> ps;
    set<lint> sts;
    REP(i, M) {
        lint u, v, c;
        cin >> u >> v >> c; u--; v--;
        if (u > v) swap(u, v);
        if (st.count(i)) {
            base_sum += c;
            ps.push_back({ u, v });
            sts.insert(u);
            sts.insert(v);
        }
        g[u].push_back({ v, c });
        g[v].push_back({ u, c });
    }
    map<lint, lint> fx;
    for (lint v : sts) fx[v] = SZ(fx);
    VVl dist(SZ(fx), Vl(SZ(fx)));
    for (lint v : sts) {
        auto _dist = Dijkstra(g, v);
        for (lint _v : sts) {
            dist[fx[v]][fx[_v]] = _dist[_v];
        }
    }
    auto s = Dijkstra(g, 0), t = Dijkstra(g, N - 1);
    VVl dp(1 << K, Vl(SZ(fx), INF));
    REP(i, K) {
        auto [u, v] = ps[i];
        dp[1 << i][fx[v]] = s[u];
        dp[1 << i][fx[u]] = s[v];
    }
    REP(mask, 1 << K) {
        REP(i, SZ(fx)) {
            REP(j, K) {
                if (mask >> j & 1) continue;
                auto [u, v] = ps[j];
                chmin(dp[mask | (1 << j)][fx[v]], dp[mask][i] + dist[i][fx[u]]);
                chmin(dp[mask | (1 << j)][fx[u]], dp[mask][i] + dist[i][fx[v]]);
            }
        }
    }
    lint minv = INF;
    REP(i, K) {
        auto [u, v] = ps[i];
        chmin(minv, dp[(1 << K) - 1][fx[u]] + t[u] + base_sum);
        chmin(minv, dp[(1 << K) - 1][fx[v]] + t[v] + base_sum);
    }
    cout << minv << endk;
}
0