結果

問題 No.1812 Uribo Road
ユーザー miscalc
提出日時 2022-01-14 23:07:25
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
MLE  
実行時間 -
コード長 3,209 bytes
コンパイル時間 2,299 ms
コンパイル使用メモリ 210,788 KB
最終ジャッジ日時 2025-01-27 12:12:46
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 4
other AC * 17 MLE * 13
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
#include <atcoder/modint>
using namespace atcoder;
//using mint = modint998244353;
using mint = modint1000000007;
using ll = long long;
using ld = long double;
using pll = pair<ll, ll>;
using tlll = tuple<ll, ll, ll>;
constexpr ll INF = 1LL << 60;
template<class T> bool chmin(T& a, T b) {if (a > b) {a = b; return true;} return false;}
template<class T> bool chmax(T& a, T b) {if (a < b) {a = b; return true;} return false;}
ll safemod(ll A, ll M) {return (A % M + M) % M;}
ll divfloor(ll A, ll B) {if (B < 0) {return divfloor(-A, -B);} return (A - safemod(A, B)) / B;}
ll divceil(ll A, ll B) {if (B < 0) {return divceil(-A, -B);} return divfloor(A + B - 1, B);}
#define FINALANS(A) do {cout << (A) << '\n'; exit(0);} while (false)
template<class T> class graph
{
public:
struct edge
{
ll to;
T cost;
edge(ll to, T cost) : to(to), cost(cost) {}
};
ll N;
vector<vector<edge>> G;
graph(ll n)
{
N = n;
G.resize(N);
}
void connect(ll sv, ll gv, T c)
{
G.at(sv).push_back(edge(gv, c));
}
void connect2(ll v0, ll v1, T c)
{
connect(v0, v1, c), connect(v1, v0, c);
}
vector<T> _01bfs(ll sv)
{
vector<T> costs(N, INF);
costs.at(sv) = 0;
deque<tuple<T, ll, ll>> deq;
for (auto e : G.at(sv))
{
if (e.cost == 0)
deq.push_front(make_tuple(e.cost, sv, e.to));
else
deq.push_back(make_tuple(e.cost, sv, e.to));
}
while (!deq.empty())
{
auto [c, pv, v] = deq.front();
deq.pop_front();
if (chmin(costs.at(v), costs.at(pv) + c))
{
for (auto e : G.at(v))
{
if (e.cost == 0)
deq.push_front(make_tuple(e.cost, v, e.to));
else
deq.push_back(make_tuple(e.cost, v, e.to));
}
}
}
return costs;
}
vector<T> dijkstra(ll sv)
{
vector<T> costs(N, INF);
costs.at(sv) = 0;
priority_queue<pair<T, ll>, vector<pair<T, ll>>, greater<pair<T, ll>>> pque;
pque.emplace(make_pair(0, sv));
while (!pque.empty())
{
auto [c, v] = pque.top();
pque.pop();
if (costs.at(v) < c)
continue;
for (auto e : G.at(v))
{
T nc = c + e.cost;
if (costs.at(e.to) > nc)
{
costs.at(e.to) = nc;
pque.emplace(nc, e.to);
}
}
}
return costs;
}
};
ll ptol(ll i, ll bt, ll K)
{
return i * (1LL << K) + bt;
}
int main()
{
ll N, M, K;
cin >> N >> M >> K;
vector<ll> invR(M, -1);
for (ll i = 0; i < K; i++)
{
ll r;
cin >> r;
r--;
invR.at(r) = i;
}
graph<ll> gr(N * (1LL << K));
for (ll i = 0; i < M; i++)
{
ll a, b, c;
cin >> a >> b >> c;
a--, b--;
for (ll bt = 0; bt < (1LL << K); bt++)
{
ll nbt = bt;
if (invR.at(i) != -1)
nbt |= (1LL << invR.at(i));
ll u = ptol(a, bt, K), nu = ptol(b, nbt, K);
ll v = ptol(b, bt, K), nv = ptol(a, nbt, K);
gr.connect(u, nu, c);
gr.connect(v, nv, c);
}
}
ll sv = ptol(0, 0, K), gv = ptol(N - 1, (1LL << K) - 1, K);
auto dists = gr.dijkstra(sv);
ll ans = dists.at(gv);
cout << ans << endl;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0