結果

問題 No.1812 Uribo Road
ユーザー iiljjiiljj
提出日時 2022-01-14 23:08:57
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 111 ms / 5,000 ms
コード長 18,156 bytes
コンパイル時間 2,235 ms
コンパイル使用メモリ 160,804 KB
実行使用メモリ 18,816 KB
最終ジャッジ日時 2024-11-20 13:57:37
合計ジャッジ時間 4,716 ms
ジャッジサーバーID
(参考情報)
judge1 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 2 ms
6,820 KB
testcase_02 AC 2 ms
6,816 KB
testcase_03 AC 35 ms
16,384 KB
testcase_04 AC 2 ms
6,820 KB
testcase_05 AC 2 ms
6,816 KB
testcase_06 AC 2 ms
6,820 KB
testcase_07 AC 6 ms
6,816 KB
testcase_08 AC 5 ms
6,820 KB
testcase_09 AC 5 ms
6,820 KB
testcase_10 AC 4 ms
6,816 KB
testcase_11 AC 3 ms
6,820 KB
testcase_12 AC 69 ms
17,664 KB
testcase_13 AC 55 ms
17,664 KB
testcase_14 AC 55 ms
17,536 KB
testcase_15 AC 26 ms
6,816 KB
testcase_16 AC 31 ms
7,168 KB
testcase_17 AC 79 ms
11,392 KB
testcase_18 AC 52 ms
18,048 KB
testcase_19 AC 111 ms
18,816 KB
testcase_20 AC 110 ms
18,688 KB
testcase_21 AC 99 ms
18,688 KB
testcase_22 AC 80 ms
18,688 KB
testcase_23 AC 10 ms
6,820 KB
testcase_24 AC 2 ms
6,820 KB
testcase_25 AC 13 ms
6,820 KB
testcase_26 AC 3 ms
6,820 KB
testcase_27 AC 27 ms
10,624 KB
testcase_28 AC 23 ms
6,816 KB
testcase_29 AC 2 ms
6,820 KB
testcase_30 AC 5 ms
6,816 KB
testcase_31 AC 73 ms
17,792 KB
testcase_32 AC 6 ms
6,816 KB
testcase_33 AC 60 ms
17,536 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

/* #region Head */

// #include <bits/stdc++.h>
#include <algorithm>
#include <array>
#include <bitset>
#include <cassert> // assert.h
#include <cmath>   // math.h
#include <cstring>
#include <ctime>
#include <deque>
#include <fstream>
#include <functional>
#include <iomanip>
#include <iostream>
#include <list>
#include <map>
#include <memory>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>
using namespace std;

using ll = long long;
using ull = unsigned long long;
using ld = long double;
using pll = pair<ll, ll>;
template <class T> using vc = vector<T>;
template <class T> using vvc = vc<vc<T>>;
using vll = vc<ll>;
using vvll = vvc<ll>;
using vld = vc<ld>;
using vvld = vvc<ld>;
using vs = vc<string>;
using vvs = vvc<string>;
template <class T, class U> using um = unordered_map<T, U>;
template <class T> using pq = priority_queue<T>;
template <class T> using pqa = priority_queue<T, vc<T>, greater<T>>;
template <class T> using us = unordered_set<T>;

#define TREP(T, i, m, n) for (T i = (m), i##_len = (T)(n); i < i##_len; ++(i))
#define TREPM(T, i, m, n) for (T i = (m), i##_max = (T)(n); i <= i##_max; ++(i))
#define TREPR(T, i, m, n) for (T i = (m), i##_min = (T)(n); i >= i##_min; --(i))
#define TREPD(T, i, m, n, d) for (T i = (m), i##_len = (T)(n); i < i##_len; i += (d))
#define TREPMD(T, i, m, n, d) for (T i = (m), i##_max = (T)(n); i <= i##_max; i += (d))

#define REP(i, m, n) for (ll i = (m), i##_len = (ll)(n); i < i##_len; ++(i))
#define REPM(i, m, n) for (ll i = (m), i##_max = (ll)(n); i <= i##_max; ++(i))
#define REPR(i, m, n) for (ll i = (m), i##_min = (ll)(n); i >= i##_min; --(i))
#define REPD(i, m, n, d) for (ll i = (m), i##_len = (ll)(n); i < i##_len; i += (d))
#define REPMD(i, m, n, d) for (ll i = (m), i##_max = (ll)(n); i <= i##_max; i += (d))
#define REPI(itr, ds) for (auto itr = ds.begin(); itr != ds.end(); itr++)
#define REPIR(itr, ds) for (auto itr = ds.rbegin(); itr != ds.rend(); itr++)
#define ALL(x) begin(x), end(x)
#define SIZE(x) ((ll)(x).size())
#define ISIZE(x) ((int)(x).size())
#define PERM(c)                                                                                                        \
    sort(ALL(c));                                                                                                      \
    for (bool c##p = 1; c##p; c##p = next_permutation(ALL(c)))
#define UNIQ(v) v.erase(unique(ALL(v)), v.end());
#define CEIL(a, b) (((a) + (b)-1) / (b))

#define endl '\n'

constexpr ll INF = 1'010'000'000'000'000'017LL;
constexpr int IINF = 1'000'000'007LL;
constexpr ll MOD = 1'000'000'007LL; // 1e9 + 7
// constexpr ll MOD = 998244353;
constexpr ld EPS = 1e-12;
constexpr ld PI = 3.14159265358979323846;

template <typename T> istream &operator>>(istream &is, vc<T> &vec) { // vector 入力
    for (T &x : vec) is >> x;
    return is;
}
template <typename T> ostream &operator<<(ostream &os, const vc<T> &vec) { // vector 出力 (for dump)
    os << "{";
    REP(i, 0, SIZE(vec)) os << vec[i] << (i == i_len - 1 ? "" : ", ");
    os << "}";
    return os;
}
template <typename T> ostream &operator>>(ostream &os, const vc<T> &vec) { // vector 出力 (inline)
    REP(i, 0, SIZE(vec)) os << vec[i] << (i == i_len - 1 ? "\n" : " ");
    return os;
}

template <typename T, size_t _Nm> istream &operator>>(istream &is, array<T, _Nm> &arr) { // array 入力
    REP(i, 0, SIZE(arr)) is >> arr[i];
    return is;
}
template <typename T, size_t _Nm> ostream &operator<<(ostream &os, const array<T, _Nm> &arr) { // array 出力 (for dump)
    os << "{";
    REP(i, 0, SIZE(arr)) os << arr[i] << (i == i_len - 1 ? "" : ", ");
    os << "}";
    return os;
}

template <typename T, typename U> istream &operator>>(istream &is, pair<T, U> &pair_var) { // pair 入力
    is >> pair_var.first >> pair_var.second;
    return is;
}
template <typename T, typename U> ostream &operator<<(ostream &os, const pair<T, U> &pair_var) { // pair 出力
    os << "(" << pair_var.first << ", " << pair_var.second << ")";
    return os;
}

// map, um, set, us 出力
template <class T> ostream &out_iter(ostream &os, const T &map_var) {
    os << "{";
    REPI(itr, map_var) {
        os << *itr;
        auto itrcp = itr;
        if (++itrcp != map_var.end()) os << ", ";
    }
    return os << "}";
}
template <typename T, typename U> ostream &operator<<(ostream &os, const map<T, U> &map_var) {
    return out_iter(os, map_var);
}
template <typename T, typename U> ostream &operator<<(ostream &os, const um<T, U> &map_var) {
    os << "{";
    REPI(itr, map_var) {
        auto [key, value] = *itr;
        os << "(" << key << ", " << value << ")";
        auto itrcp = itr;
        if (++itrcp != map_var.end()) os << ", ";
    }
    os << "}";
    return os;
}
template <typename T> ostream &operator<<(ostream &os, const set<T> &set_var) { return out_iter(os, set_var); }
template <typename T> ostream &operator<<(ostream &os, const us<T> &set_var) { return out_iter(os, set_var); }
template <typename T> ostream &operator<<(ostream &os, const pq<T> &pq_var) {
    pq<T> pq_cp(pq_var);
    os << "{";
    if (!pq_cp.empty()) {
        os << pq_cp.top(), pq_cp.pop();
        while (!pq_cp.empty()) os << ", " << pq_cp.top(), pq_cp.pop();
    }
    return os << "}";
}

// tuple 出力
template <size_t N = 0, bool end_line = false, typename... Args> ostream &operator<<(ostream &os, tuple<Args...> &a) {
    if constexpr (N < std::tuple_size_v<tuple<Args...>>) {
        os << get<N>(a);
        if constexpr (N + 1 < std::tuple_size_v<tuple<Args...>>) {
            os << ' ';
        } else if constexpr (end_line) {
            os << '\n';
        }
        return operator<<<N + 1, end_line>(os, a);
    }
    return os;
}
template <typename... Args> void print_tuple(tuple<Args...> &a) { operator<<<0, true>(cout, a); }

void pprint() { cout << endl; }
template <class Head, class... Tail> void pprint(Head &&head, Tail &&...tail) {
    cout << head;
    if (sizeof...(Tail) > 0) cout << ' ';
    pprint(move(tail)...);
}

// dump
#define DUMPOUT cerr
void dump_func() { DUMPOUT << endl; }
template <class Head, class... Tail> void dump_func(Head &&head, Tail &&...tail) {
    DUMPOUT << head;
    if (sizeof...(Tail) > 0) DUMPOUT << ", ";
    dump_func(move(tail)...);
}

// chmax (更新「される」かもしれない値が前)
template <typename T, typename U, typename Comp = less<>> bool chmax(T &xmax, const U &x, Comp comp = {}) {
    if (comp(xmax, x)) {
        xmax = x;
        return true;
    }
    return false;
}

// chmin (更新「される」かもしれない値が前)
template <typename T, typename U, typename Comp = less<>> bool chmin(T &xmin, const U &x, Comp comp = {}) {
    if (comp(x, xmin)) {
        xmin = x;
        return true;
    }
    return false;
}

// ローカル用
#ifndef ONLINE_JUDGE
#define DEBUG_
#endif

#ifndef MYLOCAL
#undef DEBUG_
#endif

#ifdef DEBUG_
#define DEB
#define dump(...)                                                                                                      \
    DUMPOUT << "  " << string(#__VA_ARGS__) << ": "                                                                    \
            << "[" << to_string(__LINE__) << ":" << __FUNCTION__ << "]" << endl                                        \
            << "    ",                                                                                                 \
        dump_func(__VA_ARGS__)
#else
#define DEB if (false)
#define dump(...)
#endif

#define VAR(type, ...)                                                                                                 \
    type __VA_ARGS__;                                                                                                  \
    cin >> __VA_ARGS__;

template <typename T> istream &operator,(istream &is, T &rhs) { return is >> rhs; }
template <typename T> ostream &operator,(ostream &os, const T &rhs) { return os << ' ' << rhs; }

struct AtCoderInitialize {
    static constexpr int IOS_PREC = 15;
    static constexpr bool AUTOFLUSH = false;
    AtCoderInitialize() {
        ios_base::sync_with_stdio(false), cin.tie(nullptr), cout.tie(nullptr);
        cout << fixed << setprecision(IOS_PREC);
        if (AUTOFLUSH) cout << unitbuf;
    }
} ATCODER_INITIALIZE;

void Yn(bool p) { cout << (p ? "Yes" : "No") << endl; }
void YN(bool p) { cout << (p ? "YES" : "NO") << endl; }

/* #endregion */

// #include <atcoder/all>
// using namespace atcoder;

/* #region Graph */

// エッジ(本来エッジは双方向だが,ここでは単方向で管理)
template <class weight_t = int, class flow_t = int> struct Edge {
    int src;         // エッジ始点となる頂点
    int dst;         // エッジ終点となる頂点
    weight_t weight; // 重み
    flow_t cap;
    Edge() : src(0), dst(0), weight(0) {}
    Edge(int src, int dst, weight_t weight) : src(src), dst(dst), weight(weight) {}
    Edge(int src, int dst, weight_t weight, flow_t cap) : src(src), dst(dst), weight(weight), cap(cap) {}
    // Edge 標準出力
    friend ostream &operator<<(ostream &os, Edge &edge) {
        os << "(" << edge.src << " -> " << edge.dst << ", " << edge.weight << ")";
        return os;
    }
};

// 同じ頂点を始点とするエッジ集合
template <class weight_t = int, class flow_t = int> class Node : public vc<Edge<weight_t, flow_t>> {
  public:
    int idx;
    Node() : vc<Edge<weight_t, flow_t>>() {}
    // void add(int a, int b, weight_t w, flow_t cap) { this->emplace_back(a, b, w, cap); };
};

// graph[i] := 頂点 i を始点とするエッジ集合
template <class weight_t = int, class flow_t = int> class Graph : public vc<Node<weight_t, flow_t>> {
  public:
    Graph() : vc<Node<weight_t, flow_t>>() {}
    Graph(int n) : vc<Node<weight_t, flow_t>>(n) { REP(i, 0, n)(*this)[i].idx = i; }
    /** 単方向 */
    void add_arc(int a, int b, weight_t w = 1, flow_t cap = 1) { (*this)[a].emplace_back(a, b, w, cap); }
    /** 双方向 */
    void add_edge(int a, int b, weight_t w = 1, flow_t cap = 1) { add_arc(a, b, w, cap), add_arc(b, a, w, cap); }
    /** ノード追加 */
    int add_node() {
        int idx = (int)this->size();
        this->emplace_back();
        Node<weight_t, flow_t> &node = this->back();
        node.idx = idx;
        return idx;
    }
};
// using Array = vc<Weight>;
// using Matrix = vc<Array>;

/* #endregion */

/* #region Dijkstra */
// ダイクストラ法
// グラフを陽に持つ
template <class Weight = ll> struct Dijkstra {
    // pair 比較よりも struct 比較のほうが速い
    struct state {
        Weight cost;
        int dst;
        state(Weight cost, int dst) : cost(cost), dst(dst) {}
        bool operator<(const state &o) const { return cost > o.cost; }
        // bool operator>(const state &o) const { return cost > o.cost; }
    };

    Graph<Weight> graph;
    vc<Weight> dist;
    vc<int> bs; // 経路復元用情報
    Weight inf;

    /** コンストラクタ */
    Dijkstra(const int n, const Weight inf = INF) : graph(n), dist(n, inf), bs(n, -1), inf(inf) {}
    /** コンストラクタ,グラフを使って初期化するバージョン */
    Dijkstra(const Graph<Weight> &graph, const Weight inf = INF)
        : graph(graph), dist(graph.size(), inf), bs(graph.size(), -1), inf(inf) {}

    // 有向辺の追加
    void add_edge(const int src, const int dst, const Weight cost) { graph.add_arc(src, dst, cost); }

    void build(const int start, const Weight init = 0) {
        priority_queue<state> que; // 昇順に並べ替え,小さい順に取り出す
        fill(ALL(dist), inf);
        fill(ALL(bs), -1);
        dist[start] = init;
        que.emplace(init, start);
        while (que.size()) {
            const state cur = que.top(); // tie(d, v) = que.top();
            que.pop();
            const int cur_node = cur.dst;
            const Weight cur_cost = cur.cost;

            if (dist[cur_node] < cur_cost) continue;
            for (const Edge<Weight> &edge : graph[cur_node])
                if (chmin(dist[edge.dst], dist[cur_node] + edge.weight)) {
                    que.emplace(dist[edge.dst], edge.dst);
                    bs[edge.dst] = cur_node;
                }
        }
    }

    // あるノードまでの距離を返す
    Weight operator[](const int dst) const { return dist[dst]; }

    // 経路復元
    // dst がスタート地点の場合は空ベクトルが返るため注意
    vc<int> restore(int dst) const {
        vc<int> res;
        if (bs[dst] < 0) return res;
        while (~dst) res.emplace_back(dst), dst = bs[dst];
        reverse(ALL(res));
        return res;
    }
};

/* #endregion */

// Problem
void solve() {
    VAR(ll, n, m, k);
    vll r(k);
    cin >> r;
    REP(i, 0, k) r[i]--;
    vll a(m), b(m), c(m);
    REP(i, 0, m) {
        cin >> a[i], b[i], c[i];
        --a[i], --b[i];
    }

    Dijkstra<ll> dijkstra(n, INF);
    REP(i, 0, m) {
        dijkstra.add_edge(a[i], b[i], c[i]);
        dijkstra.add_edge(b[i], a[i], c[i]);
    }
    // 辺 r[k] の両端点,始点,終点 の 2k+2 個を持つ
    vvll dists(2 * k + 4, vll(2 * k + 4, INF));
    ll S = 0, T = n - 1;
    REP(i, 0, k) {
        {
            ll start = a[r[i]];
            dijkstra.build(start, 0LL);
            // dists[2 * i + 0] = dijkstra.dist;
            REP(j, 0, k) {
                dists[2 * i + 0][2 * j + 0] = dijkstra.dist[a[r[j]]];
                dists[2 * i + 0][2 * j + 1] = dijkstra.dist[b[r[j]]];
            }
            dists[2 * i + 0][2 * k + 0] = dijkstra.dist[S];
            dists[2 * i + 0][2 * k + 1] = dijkstra.dist[S];
            dists[2 * i + 0][2 * k + 2] = dijkstra.dist[T];
            dists[2 * i + 0][2 * k + 3] = dijkstra.dist[T];
        }
        {
            ll start = b[r[i]];
            dijkstra.build(start, 0LL);
            // dists[2 * i + 1] = dijkstra.dist;
            REP(j, 0, k) {
                dists[2 * i + 1][2 * j + 0] = dijkstra.dist[a[r[j]]];
                dists[2 * i + 1][2 * j + 1] = dijkstra.dist[b[r[j]]];
            }
            dists[2 * i + 1][2 * k + 0] = dijkstra.dist[S];
            dists[2 * i + 1][2 * k + 1] = dijkstra.dist[S];
            dists[2 * i + 1][2 * k + 2] = dijkstra.dist[T];
            dists[2 * i + 1][2 * k + 3] = dijkstra.dist[T];
        }
    }

    if (true) {
        {
            ll start = S;
            dijkstra.build(start, 0LL);
            // dists[2 * k] = dijkstra.dist;
            REP(j, 0, k) {
                dists[2 * k + 0][2 * j + 0] = dijkstra.dist[a[r[j]]];
                dists[2 * k + 0][2 * j + 1] = dijkstra.dist[b[r[j]]];
                dists[2 * k + 1][2 * j + 0] = dijkstra.dist[a[r[j]]];
                dists[2 * k + 1][2 * j + 1] = dijkstra.dist[b[r[j]]];
            }
            dists[2 * k + 0][2 * k + 0] = dijkstra.dist[S];
            dists[2 * k + 0][2 * k + 1] = dijkstra.dist[S];
            dists[2 * k + 0][2 * k + 2] = dijkstra.dist[T];
            dists[2 * k + 0][2 * k + 3] = dijkstra.dist[T];
            dists[2 * k + 1][2 * k + 0] = dijkstra.dist[S];
            dists[2 * k + 1][2 * k + 1] = dijkstra.dist[S];
            dists[2 * k + 1][2 * k + 2] = dijkstra.dist[T];
            dists[2 * k + 1][2 * k + 3] = dijkstra.dist[T];
        }
        {
            ll start = T;
            dijkstra.build(start, 0LL);
            // dists[2 * k + 1] = dijkstra.dist;
            REP(j, 0, k) {
                dists[2 * k + 2][2 * j + 0] = dijkstra.dist[a[r[j]]];
                dists[2 * k + 2][2 * j + 1] = dijkstra.dist[b[r[j]]];
                dists[2 * k + 3][2 * j + 0] = dijkstra.dist[a[r[j]]];
                dists[2 * k + 3][2 * j + 1] = dijkstra.dist[b[r[j]]];
            }
            dists[2 * k + 2][2 * k + 0] = dijkstra.dist[S];
            dists[2 * k + 2][2 * k + 1] = dijkstra.dist[S];
            dists[2 * k + 2][2 * k + 2] = dijkstra.dist[T];
            dists[2 * k + 2][2 * k + 3] = dijkstra.dist[T];
            dists[2 * k + 3][2 * k + 0] = dijkstra.dist[S];
            dists[2 * k + 3][2 * k + 1] = dijkstra.dist[S];
            dists[2 * k + 3][2 * k + 2] = dijkstra.dist[T];
            dists[2 * k + 3][2 * k + 3] = dijkstra.dist[T];
        }
    }
    // dump(dists);

    // TSP
    vc<vvll> dp(1 << (k + 2), vvll(k + 2, vll(2, INF))); // [state, last, flag] -> (min of max, min of sum, ...)
    dp[1 << k][k][0] = 0;                                // 出発地点が S 限定
    // dp[1 << k][k][1] = 0;                            // 出発地点が S 限定
    REP(state, 1, 1 << (k + 2)) REP(from, 0, k + 2) {
        if (~state & (1 << from)) continue; // 未訪問
        if (dp[state][from][0] != INF) {
            // from が最後になるような巡回で state に至ることが可能
            REP(to, 0, k + 2) {
                if (state & (1 << to)) continue; // 訪問済み
                {
                    // from の 0 まで到達している→1を経由するので1からの距離で
                    ll dist00 = dp[state][from][0] + dists[2 * from + 1][2 * to + 0];
                    ll dist01 = dp[state][from][0] + dists[2 * from + 1][2 * to + 1];
                    chmin(dp[state | (1 << to)][to][0], dist00);
                    chmin(dp[state | (1 << to)][to][1], dist01);
                }
                {
                    // from の 1 まで到達している→0を経由するので0からの距離で
                    ll dist10 = dp[state][from][1] + dists[2 * from + 0][2 * to + 0];
                    ll dist11 = dp[state][from][1] + dists[2 * from + 0][2 * to + 1];
                    chmin(dp[state | (1 << to)][to][0], dist10);
                    chmin(dp[state | (1 << to)][to][1], dist11);
                }
            }
        }
    }

    // dump(dp[(1 << (k + 2)) - 1][k + 1]);
    // dump(dp);
    ll ans = 0;
    REP(i, 0, k) ans += c[r[i]];
    ans += *min_element(ALL(dp[(1 << (k + 2)) - 1][k + 1]));
    pprint(ans);
}

// entry point
int main() {
    solve();
    return 0;
}
0