結果
問題 | No.1812 Uribo Road |
ユーザー | stoq |
提出日時 | 2022-01-14 23:57:13 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 275 ms / 5,000 ms |
コード長 | 7,273 bytes |
コンパイル時間 | 4,923 ms |
コンパイル使用メモリ | 273,728 KB |
最終ジャッジ日時 | 2025-01-27 12:26:54 |
ジャッジサーバーID (参考情報) |
judge3 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 4 |
other | AC * 30 |
ソースコード
#define MOD_TYPE 1 #include <bits/stdc++.h> using namespace std; #include <atcoder/all> //#include <atcoder/modint> //#include <atcoder/lazysegtree> //#include <atcoder/segtree> using namespace atcoder; #if 0 #include <boost/multiprecision/cpp_dec_float.hpp> #include <boost/multiprecision/cpp_int.hpp> using Int = boost::multiprecision::cpp_int; using lld = boost::multiprecision::cpp_dec_float_100; #endif #if 0 #include <ext/pb_ds/assoc_container.hpp> #include <ext/pb_ds/tag_and_trait.hpp> #include <ext/pb_ds/tree_policy.hpp> #include <ext/rope> using namespace __gnu_pbds; using namespace __gnu_cxx; template <typename T> using extset = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>; #endif #if 1 #pragma GCC target("avx2") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #endif #pragma region Macros using ll = long long int; using ld = long double; using pii = pair<int, int>; using pll = pair<ll, ll>; using pld = pair<ld, ld>; template <typename Q_type> using smaller_queue = priority_queue<Q_type, vector<Q_type>, greater<Q_type>>; #if MOD_TYPE == 1 constexpr ll MOD = ll(1e9 + 7); #else #if MOD_TYPE == 2 constexpr ll MOD = 998244353; #else constexpr ll MOD = 1000003; #endif #endif using mint = static_modint<MOD>; constexpr int INF = (int)1e9 + 10; constexpr ll LINF = (ll)4e18; constexpr double PI = acos(-1.0); constexpr double EPS = 1e-11; constexpr int Dx[] = {0, 0, -1, 1, -1, 1, -1, 1, 0}; constexpr int Dy[] = {1, -1, 0, 0, -1, -1, 1, 1, 0}; #define REP(i, m, n) for (ll i = m; i < (ll)(n); ++i) #define rep(i, n) REP(i, 0, n) #define REPI(i, m, n) for (int i = m; i < (int)(n); ++i) #define repi(i, n) REPI(i, 0, n) #define YES(n) cout << ((n) ? "YES" : "NO") << "\n" #define Yes(n) cout << ((n) ? "Yes" : "No") << "\n" #define possible(n) cout << ((n) ? "possible" : "impossible") << "\n" #define Possible(n) cout << ((n) ? "Possible" : "Impossible") << "\n" #define all(v) v.begin(), v.end() #define NP(v) next_permutation(all(v)) #define dbg(x) cerr << #x << ":" << x << "\n"; #define UNIQUE(v) v.erase(unique(all(v)), v.end()) struct io_init { io_init() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << setprecision(30) << setiosflags(ios::fixed); }; } io_init; template <typename T> inline bool chmin(T &a, T b) { if (a > b) { a = b; return true; } return false; } template <typename T> inline bool chmax(T &a, T b) { if (a < b) { a = b; return true; } return false; } inline ll CEIL(ll a, ll b) { return (a + b - 1) / b; } template <typename A, size_t N, typename T> inline void Fill(A (&array)[N], const T &val) { fill((T *)array, (T *)(array + N), val); } template <typename T> vector<T> compress(vector<T> &v) { vector<T> val = v; sort(all(val)), val.erase(unique(all(val)), val.end()); for (auto &&vi : v) vi = lower_bound(all(val), vi) - val.begin(); return val; } template <typename T, typename U> constexpr istream &operator>>(istream &is, pair<T, U> &p) noexcept { is >> p.first >> p.second; return is; } template <typename T, typename U> constexpr ostream &operator<<(ostream &os, pair<T, U> p) noexcept { os << p.first << " " << p.second; return os; } ostream &operator<<(ostream &os, mint m) { os << m.val(); return os; } ostream &operator<<(ostream &os, modint m) { os << m.val(); return os; } template <typename T> constexpr istream &operator>>(istream &is, vector<T> &v) noexcept { for (int i = 0; i < v.size(); i++) is >> v[i]; return is; } template <typename T> constexpr ostream &operator<<(ostream &os, vector<T> &v) noexcept { for (int i = 0; i < v.size(); i++) os << v[i] << (i + 1 == v.size() ? "" : " "); return os; } random_device seed_gen; mt19937_64 engine(seed_gen()); struct BiCoef { vector<mint> fact_, inv_, finv_; BiCoef(int n) noexcept : fact_(n, 1), inv_(n, 1), finv_(n, 1) { fact_.assign(n, 1), inv_.assign(n, 1), finv_.assign(n, 1); for (int i = 2; i < n; i++) { fact_[i] = fact_[i - 1] * i; inv_[i] = -inv_[MOD % i] * (MOD / i); finv_[i] = finv_[i - 1] * inv_[i]; } } mint C(ll n, ll k) const noexcept { if (n < k || n < 0 || k < 0) return 0; return fact_[n] * finv_[k] * finv_[n - k]; } mint P(ll n, ll k) const noexcept { return C(n, k) * fact_[k]; } mint H(ll n, ll k) const noexcept { return C(n + k - 1, k); } mint Ch1(ll n, ll k) const noexcept { if (n < 0 || k < 0) return 0; mint res = 0; for (int i = 0; i < n; i++) res += C(n, i) * mint(n - i).pow(k) * (i & 1 ? -1 : 1); return res; } mint fact(ll n) const noexcept { if (n < 0) return 0; return fact_[n]; } mint inv(ll n) const noexcept { if (n < 0) return 0; return inv_[n]; } mint finv(ll n) const noexcept { if (n < 0) return 0; return finv_[n]; } }; BiCoef bc(1000010); #pragma endregion // ------------------------------- template <typename T> struct dijkstra { int V; T INF; struct edge { int to; T cost; }; vector<vector<edge>> E; vector<T> d; using pt = pair<T, int>; dijkstra() {} dijkstra(int V_) : V(V_) { E.resize(V); d.resize(V); if (is_same<int, T>::value) INF = 1e9 + 10; else INF = 8e18; } void add_edge(int a, int b, T c = 1, bool directed = true) { E[a].emplace_back(edge{b, c}); if (!directed) E[b].emplace_back(edge{a, c}); } void calc(int s) { priority_queue<pt, vector<pt>, greater<pt>> que; fill(d.begin(), d.end(), INF); que.emplace(T(0), s); d[s] = 0; while (!que.empty()) { pt p = que.top(); que.pop(); int v = p.second; if (d[v] < p.first) continue; for (auto &&e : E[v]) { if (d[e.to] > d[v] + e.cost) { d[e.to] = d[v] + e.cost; que.emplace(d[e.to], e.to); } } } } }; /* next combination */ int next_combination(int sub) { int x = sub & -sub, y = sub + x; return (((sub & ~y) / x) >> 1) | y; } int dp[1 << 12][12][2]; void solve() { int n, m, k; cin >> n >> m >> k; vector<int> r(k); rep(i, k) cin >> r[i], r[i]--; dijkstra<int> ds[13][2]; rep(i, k + 1) rep(j, 2) ds[i][j] = dijkstra<int>(n); vector<int> a(m), b(m), c(m); rep(i, m) { cin >> a[i] >> b[i] >> c[i]; a[i]--, b[i]--; rep(j, k + 1) rep(l, 2) ds[j][l].add_edge(a[i], b[i], c[i], false); } rep(i, k) ds[i][0].calc(a[r[i]]), ds[i][1].calc(b[r[i]]); ds[k][0].calc(0); Fill(dp, INF); rep(i, k) { dp[1 << i][i][1] = ds[k][0].d[a[r[i]]] + c[r[i]]; dp[1 << i][i][0] = ds[k][0].d[b[r[i]]] + c[r[i]]; } REP(msk, 1, 1 << k) { rep(i, k) rep(j, k) { if (i == j) continue; if (msk & (1 << j)) continue; int msk2 = msk | (1 << j); chmin(dp[msk2][j][0], dp[msk][i][0] + ds[i][0].d[b[r[j]]] + c[r[j]]); chmin(dp[msk2][j][1], dp[msk][i][0] + ds[i][0].d[a[r[j]]] + c[r[j]]); chmin(dp[msk2][j][0], dp[msk][i][1] + ds[i][1].d[b[r[j]]] + c[r[j]]); chmin(dp[msk2][j][1], dp[msk][i][1] + ds[i][1].d[a[r[j]]] + c[r[j]]); } } int ans = INF; rep(i, k) { chmin(ans, dp[(1 << k) - 1][i][0] + ds[i][0].d[n - 1]); chmin(ans, dp[(1 << k) - 1][i][1] + ds[i][1].d[n - 1]); } cout << ans << "\n"; } int main() { solve(); }