結果
| 問題 |
No.1595 The Final Digit
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2022-01-20 11:43:45 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 70 ms / 2,000 ms |
| コード長 | 2,940 bytes |
| コンパイル時間 | 2,070 ms |
| コンパイル使用メモリ | 200,928 KB |
| 最終ジャッジ日時 | 2025-01-27 13:12:29 |
|
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 17 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
#define bokusunny ios::sync_with_stdio(false), cin.tie(nullptr);
template <class T>
struct Matrix {
private:
vector<vector<T>> A;
public:
Matrix(const int &r, const int &c) : A(r, vector<T>(c, 0)) {}
Matrix(const int &n) : A(n, vector<T>(n, 0)) {}
int row_size() const { return (int)A.size(); }
int column_size() const { return (int)A[0].size(); }
static Matrix I(int n) {
Matrix res(n);
for (int i = 0; i < n; i++) res[i][i] = 1;
return res;
}
inline const vector<T> &operator[](int r) const {
assert(0 <= r && r < row_size());
return A[r];
}
vector<T> &operator[](int r) {
assert(0 <= r && r < row_size());
return A[r];
}
Matrix &operator+=(const Matrix &B) {
int ra = row_size(), ca = column_size();
int rb = B.row_size(), cb = B.column_size();
assert(ra == rb && ca == cb);
for (int i = 0; i < ra; i++) {
for (int j = 0; j < ca; j++) {
(*this)[i][j] += B[i][j];
}
}
return (*this);
}
Matrix &operator-=(const Matrix &B) {
int ra = row_size(), ca = column_size();
int rb = B.row_size(), cb = B.column_size();
assert(ra == rb && ca == cb);
for (int i = 0; i < ra; i++) {
for (int j = 0; j < ca; j++) {
(*this)[i][j] -= B[i][j];
}
}
return (*this);
}
Matrix &operator*=(const Matrix &B) {
int ra = row_size(), ca = column_size();
int rb = B.row_size(), cb = B.column_size();
assert(ca == rb);
vector C(ra, vector<T>(cb, 0));
for (int i = 0; i < ra; i++) {
for (int j = 0; j < cb; j++) {
for (int k = 0; k < ca; k++) {
C[i][j] += (*this)[i][k] * B[k][j];
C[i][j] %= 10;
}
}
}
A.swap(C);
return (*this);
}
Matrix &operator^=(long long k) {
Matrix B = Matrix::I(row_size());
while (k > 0) {
if (k & 1) B *= *this;
*this *= *this;
k >>= 1;
}
A.swap(B.A);
return (*this);
}
Matrix operator+(const Matrix &B) const { return (Matrix(*this) += B); }
Matrix operator-(const Matrix &B) const { return (Matrix(*this) -= B); }
Matrix operator*(const Matrix &B) const { return (Matrix(*this) *= B); }
Matrix operator^(const long long k) const { return (Matrix(*this) ^= k); }
friend ostream &operator<<(ostream &os, Matrix &Mat) {
int r = Mat.row_size(), c = Mat.column_size();
for (int i = 0; i < r; i++) {
os << "[";
for (int j = 0; j < c; j++) {
os << Mat[i][j] << (j + 1 == c ? "]\n" : ",");
}
}
return (os);
}
};
void solve() {
int p, q, r;
long long K;
cin >> p >> q >> r >> K;
Matrix<int> A(3, 1);
A[0][0] = p % 10;
A[1][0] = q % 10;
A[2][0] = r % 10;
Matrix<int> B(3, 3);
B[0][1] = B[1][2] = B[2][0] = B[2][1] = B[2][2] = 1;
K -= 3;
B ^= K;
B *= A;
cout << B[2][0] << endl;
}
int main() {
bokusunny;
solve();
return 0;
}