結果
問題 | No.194 フィボナッチ数列の理解(1) |
ユーザー | t98slider |
提出日時 | 2022-01-21 03:09:53 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 16 ms / 5,000 ms |
コード長 | 11,222 bytes |
コンパイル時間 | 2,071 ms |
コンパイル使用メモリ | 180,568 KB |
実行使用メモリ | 9,960 KB |
最終ジャッジ日時 | 2024-11-24 15:57:15 |
合計ジャッジ時間 | 3,543 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 37 |
ソースコード
#include <bits/stdc++.h>#define all(v) v.begin(), v.end()#define rall(v) v.rbegin(), v.rend()#define rep(i,n) for(int i=0;i<(int)(n);i++)#define drep(i,j,n) for(int i=0;i<(int)(n-1);i++)for(int j=i+1;j<(int)(n);j++)#define trep(i,j,k,n) for(int i=0;i<(int)(n-2);i++)for(int j=i+1;j<(int)(n-1);j++)for(int k=j+1;k<(int)(n);k++)#define codefor int test;scanf("%d",&test);while(test--)#define INT(...) int __VA_ARGS__;in(__VA_ARGS__)#define LL(...) ll __VA_ARGS__;in(__VA_ARGS__)#define yes(ans) if(ans)printf("yes\n");else printf("no\n")#define Yes(ans) if(ans)printf("Yes\n");else printf("No\n")#define YES(ans) if(ans)printf("YES\n");else printf("NO\n")#define popcount(v) __builtin_popcountll(v)#define vector2d(type,name,h,...) vector<vector<type>>name(h,vector<type>(__VA_ARGS__))#define vector3d(type,name,h,w,...) vector<vector<vector<type>>>name(h,vector<vector<type>>(w,vector<type>(__VA_ARGS__)))#define vector4d(type,name,h,w,d,...) vector<vector<vector<vector<type>>>>name(h,vector<vector<vector<type>>>(w,vector<vector<type>>(d,vector<type>(__VA_ARGS__))))using namespace std;using ll = long long;template<class T> using rpriority_queue = priority_queue<T, vector<T>, greater<T>>;const int MOD=1000000007;const int MOD2=998244353;const int INF=1<<30;const ll INF2=1LL<<60;void scan(int& a){scanf("%d",&a);}void scan(long long& a){scanf("%lld",&a);}template<class T,class L>void scan(pair<T, L>& p){scan(p.first);scan(p.second);}template<class T,class U,class V>void scan(tuple<T,U,V>& p){scan(get<0>(p));scan(get<1>(p));scan(get<2>(p));}template<class T, size_t size> void scan(array<T, size>& a){ for(auto&& i : a) scan(i);}template<class T> void scan(T& a){cin>>a;}template<class T> void scan(vector<T>& vec){for(auto&& it:vec)scan(it);}void in(){}template <class Head, class... Tail> void in(Head& head, Tail&... tail){scan(head);in(tail...);}void print(const int& a){printf("%d",a);}void print(const long long& a){printf("%lld",a);}void print(const double& a){printf("%.15lf",a);}template<class T,class L>void print(const pair<T, L>& p){print(p.first);putchar(' ');print(p.second);}template<class T> void print(const T& a){cout<<a;}template<class T> void print(const vector<T>& vec){if(vec.empty())return;print(vec[0]);for(auto it=vec.begin();++it!= vec.end();){putchar(' ');print(*it);}}void out(){putchar('\n');}template<class T> void out(const T& t){print(t);putchar('\n');}template <class Head, class... Tail> void out(const Head& head,const Tail&... tail){print(head);putchar(' ');out(tail...);}template<class T> void dprint(const T& a){cerr<<a;}template<class T> void dprint(const vector<T>& vec){if(vec.empty())return;cerr<<vec[0];for(auto it=vec.begin();++it!= vec.end();){cerr<<" "<<*it;}}void debug(){cerr<<endl;}template<class T> void debug(const T& t){dprint(t);cerr<<endl;}template <class Head, class... Tail> void debug(const Head& head, const Tail&... tail){dprint(head);cerr<<" ";debug(tail...);}ll intpow(ll a, ll b){ ll ans = 1; while(b){ if(b & 1) ans *= a; a *= a; b /= 2; } return ans; }ll modpow(ll a, ll b, ll p){ ll ans = 1; while(b){ if(b & 1) (ans *= a) %= p; (a *= a) %= p; b /= 2; } return ans; }ll modinv(ll a, ll m) {ll b = m, u = 1, v = 0;while (b) {ll t = a / b;a -= t * b; swap(a, b);u -= t * v; swap(u, v);}u %= m;if (u < 0) u += m;returnu;}ll updivide(ll a,ll b){return (a+b-1)/b;}int msb(ll v){return 63-__builtin_clzll(v);}template<class T> void chmax(T &a,const T b){if(b>a)a=b;}template<class T> void chmin(T &a,const T b){if(b<a)a=b;}namespace internal {constexpr long long safe_mod(long long x, long long m) {x %= m;if (x < 0) x += m;return x;}struct barrett {unsigned int _m;unsigned long long im;explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}unsigned int umod() const { return _m; }};constexpr long long pow_mod_constexpr(long long x, long long n, int m) {if (m == 1) return 0;unsigned int _m = (unsigned int)(m);unsigned long long r= 1;unsigned long long y = safe_mod(x, m);while (n) {if (n & 1) r = (r * y) % _m;y = (y * y) % _m;n >>= 1;}return r;}constexpr boolis_prime_constexpr(int n) {if (n <= 1) return false;if (n == 2 || n == 7 || n == 61) return true;if (n % 2 == 0) return false;long long d = n - 1;while (d % 2 == 0) d /= 2;constexpr long long bases[3] = {2, 7, 61};for (long long a : bases) {long long t = d;long long y = pow_mod_constexpr(a, t, n);while (t != n - 1 && y != 1 && y != n - 1) {y = y * y % n;t <<= 1;}if (y != n - 1 && t % 2 == 0) {return false;}}return true;}template<int n> constexpr bool is_prime = is_prime_constexpr(n);constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {a = safe_mod(a, b);if (a == 0) return {b, 0};long long s = b, t = a;longlong m0 = 0, m1 = 1;while (t) {long long u = s / t;s -= t * u;m0 -= m1 * u;auto tmp = s;s = t;t = tmp;tmp = m0;m0 = m1;m1 = tmp;}if (m0 < 0) m0+= b / s;return {s, m0};}constexpr int primitive_root_constexpr(int m) {if (m == 2) return 1;if (m == 167772161) return 3;if (m == 469762049)return 3;if (m == 754974721) return 11;if (m == 998244353) return 3;int divs[20] = {};divs[0] = 2;int cnt = 1;int x = (m - 1) / 2;while (x % 2 ==0) x /= 2;for (int i = 3; (long long)(i)*i <= x; i += 2) {if (x % i == 0) {divs[cnt++] = i;while (x % i == 0) {x /= i;}}}if (x > 1) {divs[cnt++]= x;}for (int g = 2;; g++) {bool ok = true;for (int i = 0; i < cnt; i++) {if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {ok = false;break;}}if (ok) return g;}}template <int m> constexpr int primitive_root = primitive_root_constexpr(m);unsigned long long floor_sum_unsigned(unsigned long long n,unsigned longlong m,unsigned long long a,unsigned long long b) {unsigned long long ans = 0;while (true) {if (a >= m) {ans += n * (n - 1) / 2 * (a / m);a %= m;}if (b >= m) {ans += n * (b / m);b %= m;}unsigned long long y_max = a * n + b;if (y_max < m) break;n = (unsigned long long)(y_max / m);b =(unsigned long long)(y_max % m);std::swap(m, a);}return ans;}template <class T> using is_integral = typename std::is_integral<T>;template <class T>using is_signed_int =typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,std::true_type,std::false_type>::type;template <class T>using is_unsigned_int =typename std::conditional<is_integral<T>::value &&std::is_unsigned<T>::value,std::true_type,std::false_type>::type;template <class T>using to_unsigned = typename std::conditional<is_signed_int<T>::value,std::make_unsigned<T>,std::common_type<T>>::type;template <class T> using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;template <class T> using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;template <class T> using to_unsigned_t = typename to_unsigned<T>::type;struct modint_base {};struct static_modint_base : modint_base {};template <class T> usingis_modint = std::is_base_of<modint_base, T>;template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;} // namespace internaltemplate <int m, std::enable_if_t<(1 <= m)>* = nullptr>struct static_modint : internal::static_modint_base {using mint = static_modint;public:static constexpr int mod() { return m; }static mint raw(int v) {mint x;x._v = v;return x;}static_modint() : _v(0) {}template <class T, internal::is_signed_int_t<T>* = nullptr>static_modint(T v) {long long x = (long long)(v % (long long)(umod()));if (x < 0) x += umod();_v = (unsignedint)(x);}template <class T, internal::is_unsigned_int_t<T>* = nullptr>static_modint(T v) {_v = (unsigned int)(v % umod());}unsigned int val()const { return _v; }mint& operator++() {_v++;if (_v == umod()) _v = 0;return *this;}mint& operator--() {if (_v == 0) _v = umod();_v--;return*this;}mint operator++(int) {mint result = *this;++*this;return result;}mint operator--(int) {mint result = *this;--*this;return result;}mint& operator+=(const mint& rhs) {_v += rhs._v;if (_v >= umod()) _v -= umod();return *this;}mint& operator-=(const mint& rhs) {_v -= rhs._v;if (_v >= umod()) _v += umod();return *this;}mint& operator*=(const mint& rhs) {unsigned long long z = _v;z *= rhs._v;_v = (unsigned int)(z % umod());return *this;}mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }mint operator+() const { return *this; }mint operator-() const { return mint() - *this; }mint pow(long long n) const {assert(0 <= n);mint x =*this, r = 1;while (n) {if (n & 1) r *= x;x *= x;n >>= 1;}return r;}mint inv() const {if (prime) {assert(_v);return pow(umod() - 2);} else{auto eg = internal::inv_gcd(_v, m);assert(eg.first == 1);return eg.second;}}friend mint operator+(const mint& lhs, const mint& rhs) {returnmint(lhs) += rhs;}friend mint operator-(const mint& lhs, const mint& rhs) {return mint(lhs) -= rhs;}friend mint operator*(const mint& lhs,const mint& rhs) {return mint(lhs) *= rhs;}friend mint operator/(const mint& lhs, const mint& rhs) {return mint(lhs) /= rhs;}friend booloperator==(const mint& lhs, const mint& rhs) {return lhs._v == rhs._v;}friend bool operator!=(const mint& lhs, const mint& rhs) {return lhs._v != rhs._v;}friend istream& operator>>(istream& os,mint& rhs) noexcept {long long v;rhs = mint{(os >> v, v)};return os;}friend constexprostream& operator << (ostream &os, const mint& rhs) noexcept {return os << rhs._v;}private:unsigned int _v;static constexpr unsigned int umod() { return m; }static constexpr bool prime = internal::is_prime<m>;};using mint = static_modint<1000000007>;using mint2 = static_modint<998244353>;//行列の積template<class T> vector<vector<T>> Matrix_Multiplication(vector<vector<T>> a,vector<vector<T>> b){int n=a.size(),m=a[0].size(),l=b[0].size();vector<vector<T>> ret(n,vector<T>(l,0));for(int i=0;i<n;i++){for(int j=0;j<l;j++){for(int k=0;k<m;k++){ret[i][j]+=a[i][k]*b[k][j];}}}return ret;}//行列aを正方行列と仮定して行列の累乗を計算するtemplate<class T> vector<vector<T>> Matrix_Exponentiation(vector<vector<T>> a,ll b){int n=a.size();vector<vector<T>> ret(n,vector<T>(n,0));for(int i=0;i<n;i++)ret[i][i]=1;while(b){if(b&1)ret=Matrix_Multiplication(ret,a);a=Matrix_Multiplication(a,a);b/=2;}return ret;}int main(){LL(n,k);if(n>=31){vector<mint> ans(n);in(ans);mint sumv=accumulate(all(ans),mint(0));while(ans.size()<k){ans.push_back(sumv);sumv+=ans.back();sumv-=ans[ans.size()-1-n];}while(ans.size()>k)ans.pop_back();sumv=accumulate(all(ans),mint(0));out(ans.back(),sumv);}else{vector<mint> ans(n);in(ans);if(k<=n){out(ans[k-1]);return 0;}reverse(all(ans));ans.push_back(accumulate(all(ans),mint(0)));vector2d(mint,A,n+1,n+1);rep(i,n)A[0][i]=1;rep(i,n+1)A.back()[i]=1;rep(i,n)A[i+1][i]=1;auto B=Matrix_Exponentiation(A,k-n);mint ans1,ans2;rep(i,n+1){ans1+=B[0][i]*ans[i];ans2+=B.back()[i]*ans[i];}out(ans1,ans2);}}