結果
| 問題 |
No.916 Encounter On A Tree
|
| コンテスト | |
| ユーザー |
commy
|
| 提出日時 | 2022-01-24 03:23:09 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 21 ms / 2,000 ms |
| コード長 | 5,141 bytes |
| コンパイル時間 | 998 ms |
| コンパイル使用メモリ | 79,856 KB |
| 最終ジャッジ日時 | 2025-01-27 15:05:34 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 5 |
| other | AC * 56 |
ソースコード
#include <algorithm>
#include <iostream>
#include <numeric>
#include <string>
#include <tuple>
#include <utility>
#include <vector>
#define rep(i, a, b) for (int i = int(a); i < int(b); i++)
using namespace std;
using ll = long long int;
using P = pair<ll, ll>;
// clang-format off
#ifdef _DEBUG_
#define dump(...) do{ cerr << __LINE__ << ":\t" << #__VA_ARGS__ << " = "; debug_print(__VA_ARGS__); } while(false)
template<typename T, typename... Ts> void debug_print(const T &t, const Ts &...ts) { cerr << t; ((cerr << ", " << ts), ...); cerr << endl; }
#else
#define dump(...) do{ } while(false)
#endif
template<typename T> vector<T> make_v(size_t a, T b) { return vector<T>(a, b); }
template<typename... Ts> auto make_v(size_t a, Ts... ts) { return vector<decltype(make_v(ts...))>(a, make_v(ts...)); }
template<typename T> bool chmin(T &a, const T& b) { if (a > b) {a = b; return true; } return false; }
template<typename T> bool chmax(T &a, const T& b) { if (a < b) {a = b; return true; } return false; }
template<typename T, typename... Ts> void print(const T& t, const Ts&... ts) { cout << t; ((cout << ' ' << ts), ...); cout << '\n'; }
template<typename... Ts> void input(Ts&... ts) { (cin >> ... >> ts); }
template<typename T> istream &operator,(istream &in, T &t) { return in >> t; }
// clang-format on
template<ll MOD = 1000000007>
class ModInt {
ll n;
ModInt constexpr inverse() const {
return ModInt::pow(*this, MOD - 2);
}
public:
ModInt() : n(0) {}
ModInt(ll _n) : n(((_n % MOD) + MOD) % MOD) {}
ModInt operator+=(const ModInt &m) {
n += m.n;
if (n >= MOD) n -= MOD;
return *this;
}
ModInt operator-=(const ModInt &m) {
n -= m.n;
if (n < 0) n += MOD;
return *this;
}
ModInt operator*=(const ModInt &m) {
n *= m.n;
if (n >= MOD) n %= MOD;
return *this;
}
ModInt operator/=(const ModInt &m) {
(*this) *= m.inverse();
return *this;
}
friend ModInt operator+(ModInt t, const ModInt &m) {
return t += m;
}
friend ModInt operator-(ModInt t, const ModInt &m) {
return t -= m;
}
friend ModInt operator*(ModInt t, const ModInt &m) {
return t *= m;
}
friend ModInt operator/(ModInt t, const ModInt &m) {
return t /= m;
}
ModInt operator=(const ll l) {
n = l % MOD;
if (n < 0) n += MOD;
return *this;
}
friend ostream &operator<<(ostream &out, const ModInt &m) {
out << m.n;
return out;
}
friend istream &operator>>(istream &in, ModInt &m) {
ll l;
in >> l;
m = l;
return in;
}
static constexpr ModInt pow(const ModInt x, ll p) {
ModInt<MOD> ans = 1;
for (ModInt<MOD> m = x; p > 0; p /= 2, m *= m) {
if (p % 2) ans *= m;
}
return ans;
}
static constexpr ll mod() {
return MOD;
}
};
using mint = ModInt<>;
mint operator"" _m(unsigned long long m) {
return mint(m);
}
class Combination {
vector<mint> factor, rfactor;
public:
Combination(int n) {
factor.resize(n, 1);
rfactor.resize(n, 1);
for (int i = 1; i < n; i++) {
factor[i] = i * factor[i - 1];
}
rfactor[n - 1] = 1 / factor[n - 1];
for (int i = n - 1; i > 0; i--) {
rfactor[i - 1] = rfactor[i] * i;
}
}
mint nCr(int n, int r) {
if (n < r) return 0;
if (n < mint::mod()) return factor[n] * rfactor[r] * rfactor[n - r];
// Lucasの定理
mint res = 1;
while (n || r) {
int nn = n % mint::mod(), rr = r % mint::mod();
n /= mint::mod();
r /= mint::mod();
res *= nCr(nn, rr);
}
return res;
}
mint nPr(int n, int r) {
return factor[n] * rfactor[n - r];
}
mint nSr(ll n, int r) {
mint ans = 0;
for (int i = r, s = 1; i >= 0; i--, s *= -1) {
ans += s * nCr(r, i) * mint::pow(i, n);
}
return ans * rfactor[r];
}
mint factorial(int n) {
return factor[n];
}
};
int main() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
int d, l, r, k;
cin, d, l, r, k;
d--;
int dl = 0, dr = 0;
for (int i = d; i >= 0; i--) {
if (l < (1 << (i + 1))) {
dl = i;
}
if (r < (1 << (i + 1))) {
dr = i;
}
}
if (dl < dr) {
swap(dl, dr);
swap(l, r);
}
// dl >= dr
mint ans = 0;
mint m = 1;
Combination comb(2 << d);
rep(i, 0, d + 1) {
if (i != dr) {
m *= comb.factorial(1 << i);
} else {
if (dl == dr) {
m *= (1 << i) * comb.factorial((1 << i) - 2);
} else {
m *= comb.factorial((1 << i) - 1);
}
}
}
for (int dd = dr; dd >= 0; dd--) {
if (dl + dr - 2 * dd == k) {
int rest = max(dr - dd - 1, 0);
ans += m * (1 << rest);
}
}
print(ans);
return 0;
}
commy