結果
問題 | No.685 Logical Operations |
ユーザー | Gosu_Hiroo |
提出日時 | 2022-01-24 12:22:37 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
CE
(最新)
AC
(最初)
|
実行時間 | - |
コード長 | 26,176 bytes |
コンパイル時間 | 2,174 ms |
コンパイル使用メモリ | 206,452 KB |
最終ジャッジ日時 | 2024-11-15 02:08:30 |
合計ジャッジ時間 | 2,746 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
コンパイルエラー時のメッセージ・ソースコードは、提出者また管理者しか表示できないようにしております。(リジャッジ後のコンパイルエラーは公開されます)
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
コンパイルメッセージ
main.cpp: In instantiation of 'int out(std::ostream&, const T&) [with T = atcoder::static_modint<1000000007>; std::ostream = std::basic_ostream<char>]': main.cpp:742:5: required from here main.cpp:70:54: error: no match for 'operator<<' (operand types are 'std::ostream' {aka 'std::basic_ostream<char>'} and 'const atcoder::static_modint<1000000007>') 70 | template<class T>int out(ostream& os, const T& t){os << t << '\n';return 0;} | ~~~^~~~ In file included from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/istream:39, from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/sstream:38, from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/complex:45, from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/ccomplex:39, from /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/x86_64-pc-linux-gnu/bits/stdc++.h:54, from main.cpp:7: /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/ostream:108:7: note: candidate: 'std::basic_ostream<_CharT, _Traits>::__ostream_type& std::basic_ostream<_CharT, _Traits>::operator<<(__ostream_type& (*)(__ostream_type&)) [with _CharT = char; _Traits = std::char_traits<char>; __ostream_type = std::basic_ostream<char>]' 108 | operator<<(__ostream_type& (*__pf)(__ostream_type&)) | ^~~~~~~~ /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/ostream:108:36: note: no known conversion for argument 1 from 'const atcoder::static_modint<1000000007>' to 'std::basic_ostream<char>::__ostream_type& (*)(std::basic_ostream<char>::__ostream_type&)' {aka 'std::basic_ostream<char>& (*)(std::basic_ostream<char>&)'} 108 | operator<<(__ostream_type& (*__pf)(__ostream_type&)) | ~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~ /home/linuxbrew/.linuxbrew/Cellar/gcc@12/12.3.0/include/c++/12/
ソースコード
/** * code generated by JHelper * More info: https://github.com/AlexeyDmitriev/JHelper * @author */ #include <bits/stdc++.h> using namespace std; using ll = long long; using ld = long double; template<typename T> using P = array<T, 2>; template<typename U> using T = array<U, 3>; template<typename T> using V = vector<T>; using VI = vector<int>; using VL = vector<long long>; //#pragma GCC optimize("O3") //#pragma GCC target("avx2") //#pragma GCC target("avx512f") //#pragma GCC optimize("unroll-loops") //#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native") //#pragma GCC optimize("Ofast") #define SZ(x) ((long long)(x).size()) #define READ ({long long t;cin >> t;t;}) #define overload4(_1, _2, _3, _4, name, ...) name #define REP1(n) for(ll i=0;i<n;++i) #define REP2(i, n) for(ll i=0;i<n;++i) #define REP3(i, a, b) for(ll i=a;i<b;++i) #define REP4(i, a, b, c) for(ll i=a;i<b;i+=c) #define REP(...) overload4(__VA_ARGS__,REP4,REP3,REP2,REP1)(__VA_ARGS__) #define RREP1(n) for(ll i=n;i--;) #define RREP2(i, n) for(ll i=n;i--;) #define RREP3(i, a, b) for(ll i=b;i-->(a);) #define RREP4(i, a, b, c) for(ll i=(a)+((b)-(a)-1)/(c)*(c);i>=(a);i-=c) #define RREP(...) overload4(__VA_ARGS__,RREP4,RREP3,RREP2,RREP1)(__VA_ARGS__) #define ALL(x) (x).begin(),(x).end() #define RALL(x) (x).rbegin(),(x).rend() #define UNIQUE(v) sort(v.begin(), v.end()), v.erase( unique(v.begin(), v.end()), v.end()) #define EB emplace_back #define PB push_back #define fcout cout << fixed << setprecision(12) #define fcerr cerr << fixed << setprecision(12) #define print(...) out(cout, __VA_ARGS__) #define fprint(x) cout << fixed << setprecision(12) << (x) << '\n' # define BYE(a) do { cout << (a) << endl; return ; } while (false) #define LB lower_bound #define UB upper_bound #define LBI(c, x) distance((c).begin(), lower_bound((c).begin(), (c).end(), (x))) #define UBI(c, x) distance((c).begin(), upper_bound((c).begin(), (c).end(), (x))) #define ifn(x) if(!(x)) #define itn int #define pritn print #define pirnt print #define RPE REP #ifdef DEBUG #define DBG(args...) ({ string _s = #args; stringstream _ss(_s); istream_iterator<string> _it(_ss); _err(cerr,_it, args); }) #define ERR(args...) ({ string _s = #args; stringstream _ss(_s); istream_iterator<string> _it(_ss); _err(std::cerr,_it, args); }) #else #define DBG(args...) ({}) #define ERR(args...) ({}) #endif //@formatter:off void _err(std::ostream& cerr, istream_iterator<string> it){cerr << endl;} template<typename T, typename... Args>void _err(std::ostream& cerr, istream_iterator<string> it, T a, Args... args){cerr << (it->empty()||it->back()!=','?(*it):it->substr(0, it->size()-1)) << " = " << a << " ";_err(cerr, ++it, args...);} template<class T>int out(ostream& os, const T& t){os << t << '\n';return 0;} template<class Head, class... Tail>int out(ostream& os, const Head& head, const Tail& ... tail){os << head << ' ';out(os, tail...);return 0;} template<class T>auto min(T& v){return *min_element(v.begin(), v.end());} template<class T>auto max(T& v){return *max_element(v.begin(), v.end());} template<class U = long long, class T> auto sum(T& v){ return accumulate(v.begin(), v.end(), (U) 0); } template<typename T, typename U> istream& operator>>(istream& is, pair<T, U>& V){ is >> V.F >> V.S; return is; } template<typename T> istream& operator>>(istream& is, vector<T>& V){ for(auto&& ele : V)is >> ele; return is; } template<typename T, size_t N> istream& operator>>(istream& is, array<T, N>& V){ for(auto&& ele : V)is >> ele; return is; } template<typename T> ostream& operator<<(ostream& os, const vector<T> V){ os << "["; int cnt = 0; T curr; if(!V.empty()){ for(int i = 0; i < V.size() - 1; ++i){ if(V[i] == curr)cnt++; else cnt = 0; if(cnt == 4)os << "... "; if(cnt < 4) os << i << ":" << V[i] << " "; curr = V[i]; } os << V.size() - 1 << ":" << V.back(); } os << "]\n"; return os; } template<typename T,size_t N> ostream& operator<<(ostream& os, const array<T,N> V){ os << "["; int cnt = 0; T curr; if(!V.empty()){ for(int i = 0; i < V.size() - 1; ++i){ if(V[i] == curr)cnt++; else cnt = 0; if(cnt == 4)os << "... "; if(cnt < 4) os << i << ":" << V[i] << " "; curr = V[i]; } os << V.size() - 1 << ":" << V.back(); } os << "]\n"; return os; } template<typename T, typename U> ostream& operator<<(ostream& os, const pair<T, U> P){ os << "("; os << P.first << "," << P.second; os << ")"; return os; } template<typename T, typename U> ostream& operator<<(ostream& os, const set<T, U> V){ os << "{"; if(!V.empty()){ auto it = V.begin(); for(int i = 0; i < V.size() - 1; ++i){ os << *it << " "; it++; } os << *it; } os << "}\n"; return os; } template<typename K, typename H, typename P> ostream& operator<<(ostream& os, const unordered_set<K, H, P> V){ os << "{"; if(!V.empty()){ auto it = V.begin(); for(int i = 0; i < V.size() - 1; ++i){ os << *it << " "; it++; } os << *it; } os << "}\n"; return os; } template<typename K, typename C> ostream& operator<<(ostream& os, const multiset<K, C> V){ os << "{"; if(!V.empty()){ auto it = V.begin(); for(int i = 0; i < V.size() - 1; ++i){ os << *it << " "; it++; } os << *it; } os << "}"; return os; } template<typename K, typename T, typename C> ostream& operator<<(ostream& os, const map<K, T, C> V){ os << "{"; if(!V.empty()){ auto it = V.begin(); for(int i = 0; i < V.size() - 1; ++i){ os << "("; os << it->first << "," << it->second; os << ") "; it++; } os << "("; os << it->first << "," << it->second; os << ")"; } os << "}\n"; return os; } template<typename K, typename T, typename C> ostream& operator<<(ostream& os, const unordered_map<K, T, C> V){ os << "{"; if(!V.empty()){ auto it = V.begin(); for(int i = 0; i < V.size() - 1; ++i){ os << "("; os << it->first << "," << it->second; os << ") "; it++; } os << "("; os << it->first << "," << it->second; os << ")"; } os << "}\n"; return os; } template<typename T> ostream& operator<<(ostream& os, const deque<T> V){ os << "["; if(!V.empty()){ for(int i = 0; i < V.size() - 1; ++i){ os << V[i] << "->"; } if(!V.empty())os << V.back(); } os << "]\n"; return os; }; template<typename T, typename Cont, typename Comp> ostream& operator<<(ostream& os, const priority_queue<T, Cont, Comp> V){ priority_queue<T, Cont, Comp> _V = V; os << "["; if(!_V.empty()){ while(_V.size() > 1){ os << _V.top() << "->"; _V.pop(); } os << _V.top(); } os << "]\n"; return os; }; template<class F> struct y_combinator{ F f; template<class... Args> decltype(auto) operator()(Args&& ... args) const{ return f(*this, std::forward<Args>(args)...); } }; template<class F> y_combinator<decay_t<F>> recursive(F&& f){ return {forward<F>(f)}; } struct hash_pair{ template<class T1, class T2> size_t operator()(const pair<T1, T2>& p) const{ auto hash1 = hash<T1>{}(p.first); auto hash2 = hash<T2>{}(p.second); return hash1^hash2; } }; template<typename U> auto vec(int n, U v){ return vector<U>(n, v); } template<typename... Args> auto vec(int n, Args... args){ auto val = vec(forward<Args>(args)...); return vector<decltype(val)>(n, move(val)); } template<typename T, typename U = less<int>>vector<int> order(vector<T> &a, U comp = less<T>{}){V<int> res(a.size());iota(res.begin(), res.end(), 0);sort(res.begin(), res.end(), [&a,&comp](int l, int r){return comp(a[l], a[r]);});return res;} const double PI = 2*acos(.0); const int INF = 0x3f3f3f3f; template<class T> inline T ceil(T a, T b){return a > 0 ? (a + b - 1)/b : a/b;} template<class T> inline T floor(T a, T b){return a > 0 ? a/b : (a - b + 1)/b;} inline long long popcount(ll x){return __builtin_popcountll(x);} ll pow2(ll a){return 1ll << a;} ll is_pow2(ll a){return a && !(a&(a-1));} ll msb(ll a){return a ? 63 - __builtin_clzll(a) : -INF;} ll lsb(ll a){return a ? INF: __builtin_ctzll(a);} ll powi(ll a, ll b){ ll res = 1; while(b){ if(b&1) res *= a; a *= a; b >>= 1; } return res; } ll powp(ll a, ll b, ll p){ ll res = 1; while(b){ if(b&1) (res *= a) %= p; (a *= a) %= p; b >>= 1; } return res; } template<class T, class U> inline bool chmax(T& a, const U& b){ if(a < b){ a = b; return 1; } return 0; } template<class T, class U> inline bool chmin(T& a, const U& b){ if(b < a){ a = b; return 1; } return 0; } vector<int> iota(int N){ vector<int> a(N); iota(a.begin(), a.end(), 0); return a; } vector<pair<ll, ll>> PF(ll N){ assert(N >= 1); vector<pair<ll, ll>> res; if(~N&1){ res.emplace_back(2, 1); while(~(N /= 2)&1)res.back().second++; } for(ll i = 3; i*i <= N; i += 2) if(N%i == 0){ res.push_back({i, 1}); while((N /= i)%i == 0) res.back().second++; } if(N != 1)res.push_back({N, 1}); return res; } vector<ll> factors(ll N){ vector<ll> res; ll i = 1; for(; i*i < N; i++){ if(N%i == 0)res.emplace_back(i), res.emplace_back(N/i);} if(i*i == N)res.emplace_back(i); return res; } //@formatter:on #ifndef ATCODER_MODINT_HPP #define ATCODER_MODINT_HPP 1 #ifndef ATCODER_INTERNAL_MATH_HPP #define ATCODER_INTERNAL_MATH_HPP 1 #include <utility> namespace atcoder { namespace internal { // @param m `1 <= m` // @return x mod m constexpr long long safe_mod(long long x, long long m) { x %= m; if (x < 0) x += m; return x; } // Fast moduler by barrett reduction // Reference: https://en.wikipedia.org/wiki/Barrett_reduction // NOTE: reconsider after Ice Lake struct barrett { unsigned int _m; unsigned long long im; // @param m `1 <= m` barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {} // @return m unsigned int umod() const { return _m; } // @param a `0 <= a < m` // @param b `0 <= b < m` // @return `a * b % m` unsigned int mul(unsigned int a, unsigned int b) const { // [1] m = 1 // a = b = im = 0, so okay // [2] m >= 2 // im = ceil(2^64 / m) // -> im * m = 2^64 + r (0 <= r < m) // let z = a*b = c*m + d (0 <= c, d < m) // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2 // ((ab * im) >> 64) == c or c + 1 unsigned long long z = a; z *= b; #ifdef _MSC_VER unsigned long long x; _umul128(z, im, &x); #else unsigned long long x = (unsigned long long)(((unsigned __int128)(z)*im) >> 64); #endif unsigned int v = (unsigned int)(z - x * _m); if (_m <= v) v += _m; return v; } }; // @param n `0 <= n` // @param m `1 <= m` // @return `(x ** n) % m` constexpr long long pow_mod_constexpr(long long x, long long n, int m) { if (m == 1) return 0; unsigned int _m = (unsigned int)(m); unsigned long long r = 1; unsigned long long y = safe_mod(x, m); while (n) { if (n & 1) r = (r * y) % _m; y = (y * y) % _m; n >>= 1; } return r; } // Reference: // M. Forisek and J. Jancina, // Fast Primality Testing for Integers That Fit into a Machine Word // @param n `0 <= n` constexpr bool is_prime_constexpr(int n) { if (n <= 1) return false; if (n == 2 || n == 7 || n == 61) return true; if (n % 2 == 0) return false; long long d = n - 1; while (d % 2 == 0) d /= 2; for (long long a : {2, 7, 61}) { long long t = d; long long y = pow_mod_constexpr(a, t, n); while (t != n - 1 && y != 1 && y != n - 1) { y = y * y % n; t <<= 1; } if (y != n - 1 && t % 2 == 0) { return false; } } return true; } template <int n> constexpr bool is_prime = is_prime_constexpr(n); // @param b `1 <= b` // @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) { a = safe_mod(a, b); if (a == 0) return {b, 0}; // Contracts: // [1] s - m0 * a = 0 (mod b) // [2] t - m1 * a = 0 (mod b) // [3] s * |m1| + t * |m0| <= b long long s = b, t = a; long long m0 = 0, m1 = 1; while (t) { long long u = s / t; s -= t * u; m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b // [3]: // (s - t * u) * |m1| + t * |m0 - m1 * u| // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u) // = s * |m1| + t * |m0| <= b auto tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } // by [3]: |m0| <= b/g // by g != b: |m0| < b/g if (m0 < 0) m0 += b / s; return {s, m0}; } // Compile time primitive root // @param m must be prime // @return primitive root (and minimum in now) constexpr int primitive_root_constexpr(int m) { if (m == 2) return 1; if (m == 167772161) return 3; if (m == 469762049) return 3; if (m == 754974721) return 11; if (m == 998244353) return 3; int divs[20] = {}; divs[0] = 2; int cnt = 1; int x = (m - 1) / 2; while (x % 2 == 0) x /= 2; for (int i = 3; (long long)(i)*i <= x; i += 2) { if (x % i == 0) { divs[cnt++] = i; while (x % i == 0) { x /= i; } } } if (x > 1) { divs[cnt++] = x; } for (int g = 2;; g++) { bool ok = true; for (int i = 0; i < cnt; i++) { if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) { ok = false; break; } } if (ok) return g; } } template <int m> constexpr int primitive_root = primitive_root_constexpr(m); } // namespace internal } // namespace atcoder #endif // ATCODER_INTERNAL_MATH_HPP #ifndef ATCODER_INTERNAL_TYPE_TRAITS_HPP #define ATCODER_INTERNAL_TYPE_TRAITS_HPP 1 #include <cassert> #include <numeric> #include <type_traits> namespace atcoder { namespace internal { #ifndef _MSC_VER template <class T> using is_signed_int128 = typename std::conditional<std::is_same<T, __int128_t>::value || std::is_same<T, __int128>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int128 = typename std::conditional<std::is_same<T, __uint128_t>::value || std::is_same<T, unsigned __int128>::value, std::true_type, std::false_type>::type; template <class T> using make_unsigned_int128 = typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t, unsigned __int128>; template <class T> using is_integral = typename std::conditional<std::is_integral<T>::value || is_signed_int128<T>::value || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using is_signed_int = typename std::conditional<(is_integral<T>::value && std::is_signed<T>::value) || is_signed_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int = typename std::conditional<(is_integral<T>::value && std::is_unsigned<T>::value) || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using to_unsigned = typename std::conditional< is_signed_int128<T>::value, make_unsigned_int128<T>, typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>, std::common_type<T>>::type>::type; #else template <class T> using is_integral = typename std::is_integral<T>; template <class T> using is_signed_int = typename std::conditional<is_integral<T>::value && std::is_signed<T>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int = typename std::conditional<is_integral<T>::value && std::is_unsigned<T>::value, std::true_type, std::false_type>::type; template <class T> using to_unsigned = typename std::conditional<is_signed_int<T>::value, std::make_unsigned<T>, std::common_type<T>>::type; #endif template <class T> using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>; template <class T> using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>; template <class T> using to_unsigned_t = typename to_unsigned<T>::type; } // namespace internal } // namespace atcoder #endif // ATCODER_INTERNAL_TYPE_TRAITS_HPP #ifdef _MSC_VER #include <intrin.h> #endif namespace atcoder { namespace internal { struct modint_base {}; struct static_modint_base : modint_base {}; template <class T> using is_modint = std::is_base_of<modint_base, T>; template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>; } // namespace internal template <int m, std::enable_if_t<(1 <= m)>* = nullptr> struct static_modint : internal::static_modint_base { using mint = static_modint; public: static constexpr int mod() { return m; } static mint raw(int v) { mint x; x._v = v; return x; } static_modint() : _v(0) {} template <class T, internal::is_signed_int_t<T>* = nullptr> static_modint(T v) { long long x = (long long)(v % (long long)(umod())); if (x < 0) x += umod(); _v = (unsigned int)(x); } template <class T, internal::is_unsigned_int_t<T>* = nullptr> static_modint(T v) { _v = (unsigned int)(v % umod()); } static_modint(bool v) { _v = ((unsigned int)(v) % umod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v -= rhs._v; if (_v >= umod()) _v += umod(); return *this; } mint& operator*=(const mint& rhs) { unsigned long long z = _v; z *= rhs._v; _v = (unsigned int)(z % umod()); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { if (prime) { assert(_v); return pow(umod() - 2); } else { auto eg = internal::inv_gcd(_v, m); assert(eg.first == 1); return eg.second; } } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static constexpr unsigned int umod() { return m; } static constexpr bool prime = internal::is_prime<m>; }; template <int id> struct dynamic_modint : internal::modint_base { using mint = dynamic_modint; public: static int mod() { return (int)(bt.umod()); } static void set_mod(int m) { assert(1 <= m); bt = internal::barrett(m); } static mint raw(int v) { mint x; x._v = v; return x; } dynamic_modint() : _v(0) {} template <class T, internal::is_signed_int_t<T>* = nullptr> dynamic_modint(T v) { long long x = (long long)(v % (long long)(mod())); if (x < 0) x += mod(); _v = (unsigned int)(x); } template <class T, internal::is_unsigned_int_t<T>* = nullptr> dynamic_modint(T v) { _v = (unsigned int)(v % mod()); } dynamic_modint(bool v) { _v = ((unsigned int)(v) % mod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v += mod() - rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator*=(const mint& rhs) { _v = bt.mul(_v, rhs._v); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { auto eg = internal::inv_gcd(_v, mod()); assert(eg.first == 1); return eg.second; } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static internal::barrett bt; static unsigned int umod() { return bt.umod(); } }; template <int id> internal::barrett dynamic_modint<id>::bt = 998244353; using modint998244353 = static_modint<998244353>; using modint1000000007 = static_modint<1000000007>; using modint = dynamic_modint<-1>; namespace internal { template <class T> using is_static_modint = std::is_base_of<internal::static_modint_base, T>; template <class T> using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>; template <class> struct is_dynamic_modint : public std::false_type {}; template <int id> struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {}; template <class T> using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>; } // namespace internal } // namespace atcoder #endif // ATCODER_MODINT_HPP using namespace atcoder; using mint = modint1000000007; //using mint = modint998244353; const int _MX = 3e6; mint _inv[_MX + 1], _fact[_MX + 1], _inv_fact[_MX + 1]; struct modint_init{ modint_init(){ for(int i = 2; i <= _MX; ++i){ _inv[i] = 1LL*_inv[mint::mod()%i].val()*(mint::mod() - mint::mod()/i)%mint::mod(); } _fact[0] = 1; for(unsigned i = 1; i <= _MX; ++i){ _fact[i] = _fact[i - 1]*i; } _inv_fact[_MX] = _fact[_MX].inv(); for(int i = _MX - 1; i >= 0; --i){ _inv_fact[i] = _inv_fact[i + 1]*(i + 1); } }; } _modint_init; mint binom(int n, int r){ assert(r >= 0); assert(n >= r); assert(n <= _MX); return _fact[n]*_inv_fact[r]*_inv_fact[n - r]; } mint fact(int n){ assert(n <= _MX); return _fact[n]; } mint inv(int n){ assert(n <= _MX); return _inv[n]; } std::ostream& operator<<(std::ostream& os, const mint& x){ return os << x.val(); } template<int M, unsigned F> std::istream& operator>>(std::istream& is, mint& x){ long long t; is >> t; x = mint(t); return is; } void solve(std::istream& cin, std::ostream& cout, std::ostream& cerr){ ll N; cin >> N; auto dp = vec(2,2,2,2,mint(0)); dp[0][0][0][0] = 1; RREP(i, 63){ auto n_dp = vec(2,2,2,2,mint(0)); int Ni = (N>>i)&1ll; DBG(i, Ni); REP(j,2)REP(k,2)REP(l,2)REP(m,2)REP(xi,2)REP(yi,2){ int n_j = 1, n_k = 1, n_l = 1, n_m = 1; if(m==0 && !(xi && yi))n_m = 0; if(!j && xi>Ni)continue; if(!k && yi>Ni)continue; if(!l && xi && yi)continue; if(!j && xi==Ni)n_j = 0; if(!k && yi==Ni)n_k = 0; if(!l && !xi && !yi)n_l = 0; n_dp[n_j][n_k][n_l][n_m] += dp[j][k][l][m]; } dp = move(n_dp); DBG(dp); } mint ans = 0; REP(j,2)REP(k,2)ans += dp[j][k][1][1]; print(ans/2); } #undef int int main() { istream& in(cin); ostream& out(cout); ostringstream err; in.tie(0); ios::sync_with_stdio(0); solve(in, out, err); return 0; }