結果
| 問題 |
No.1811 EQUIV Ten
|
| コンテスト | |
| ユーザー |
Chanyuh
|
| 提出日時 | 2022-01-27 09:41:09 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 13 ms / 2,000 ms |
| コード長 | 3,738 bytes |
| コンパイル時間 | 1,320 ms |
| コンパイル使用メモリ | 122,264 KB |
| 最終ジャッジ日時 | 2025-01-27 15:32:17 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 33 |
ソースコード
#include<iostream>
#include<array>
#include<string>
#include<cstdio>
#include<vector>
#include<cmath>
#include<algorithm>
#include<functional>
#include<iomanip>
#include<queue>
#include<ciso646>
#include<random>
#include<map>
#include<set>
#include<complex>
#include<bitset>
#include<stack>
#include<unordered_map>
#include<utility>
#include<tuple>
#include<cassert>
using namespace std;
typedef long long ll;
const ll mod = 1000000007;
const ll INF = (ll)1000000007 * 1000000007;
typedef pair<int, int> P;
#define rep(i,n) for(int i=0;i<n;i++)
#define per(i,n) for(int i=n-1;i>=0;i--)
#define Rep(i,sta,n) for(int i=sta;i<n;i++)
#define Per(i,sta,n) for(int i=n-1;i>=sta;i--)
typedef long double ld;
const ld eps = 1e-8;
const ld pi = acos(-1.0);
typedef pair<ll, ll> LP;
int dx[4]={1,-1,0,0};
int dy[4]={0,0,1,-1};
template<class T>bool chmax(T &a, const T &b) {if(a<b){a=b;return 1;}return 0;}
template<class T>bool chmin(T &a, const T &b) {if(b<a){a=b;return 1;}return 0;}
template<int mod>
struct ModInt {
long long x;
static constexpr int MOD = mod;
ModInt() : x(0) {}
ModInt(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
explicit operator int() const {return x;}
ModInt &operator+=(const ModInt &p) {
if((x += p.x) >= mod) x -= mod;
return *this;
}
ModInt &operator-=(const ModInt &p) {
if((x += mod - p.x) >= mod) x -= mod;
return *this;
}
ModInt &operator*=(const ModInt &p) {
x = (int)(1LL * x * p.x % mod);
return *this;
}
ModInt &operator/=(const ModInt &p) {
*this *= p.inverse();
return *this;
}
ModInt operator-() const { return ModInt(-x); }
ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }
ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }
ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }
ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }
ModInt operator%(const ModInt &p) const { return ModInt(0); }
bool operator==(const ModInt &p) const { return x == p.x; }
bool operator!=(const ModInt &p) const { return x != p.x; }
ModInt inverse() const{
int a = x, b = mod, u = 1, v = 0, t;
while(b > 0) {
t = a / b;
a -= t * b;
swap(a, b);
u -= t * v;
swap(u, v);
}
return ModInt(u);
}
ModInt power(long long n) const {
ModInt ret(1), mul(x);
while(n > 0) {
if(n & 1)
ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
ModInt power(const ModInt p) const{
return ((ModInt)x).power(p.x);
}
friend ostream &operator<<(ostream &os, const ModInt<mod> &p) {
return os << p.x;
}
friend istream &operator>>(istream &is, ModInt<mod> &a) {
long long x;
is >> x;
a = ModInt<mod>(x);
return (is);
}
};
using modint = ModInt<mod>;
int n;
modint dp[200010][12];
void solve(){
cin >> n;
dp[0][0]=1;
rep(i,n){
rep(S,8){
if(i>=3 && S==2){
dp[i+1][S>>1]+=dp[i][S];
continue;
}
dp[i+1][S>>1]+=dp[i][S];
dp[i+1][(S+8)>>1]+=dp[i][S];
}
}
// rep(i,n+1){
// rep(S,8){
// cout << i << " " << bitset<3>(S) << " " << dp[i][S] << endl;
// }
// }
modint ans=0;
rep(S,8){
ans+=dp[n][S];
}
cout << ((modint)2).power(n)-ans << endl;
}
int main(){
ios::sync_with_stdio(false);
cin.tie(0);
cout << fixed << setprecision(50);
solve();
}
Chanyuh