結果
| 問題 |
No.1326 ふたりのDominator
|
| コンテスト | |
| ユーザー |
Nachia
|
| 提出日時 | 2022-01-27 19:12:01 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
RE
|
| 実行時間 | - |
| コード長 | 12,536 bytes |
| コンパイル時間 | 1,752 ms |
| コンパイル使用メモリ | 97,824 KB |
| 最終ジャッジ日時 | 2025-01-27 15:42:29 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | RE * 1 |
| other | AC * 6 RE * 18 |
コンパイルメッセージ
main.cpp: In function ‘int main()’:
main.cpp:391:17: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
391 | int n; scanf("%d", &n);
| ~~~~~^~~~~~~~~~
main.cpp:392:17: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
392 | int m; scanf("%d", &m);
| ~~~~~^~~~~~~~~~
main.cpp:394:36: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
394 | for(auto& [u,v] : edges){ scanf("%d%d", &u, &v); u--; v--; }
| ~~~~~^~~~~~~~~~~~~~~~
main.cpp:396:17: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
396 | int q; scanf("%d", &q);
| ~~~~~^~~~~~~~~~
main.cpp:398:23: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
398 | int u,v; scanf("%d%d", &u, &v); u--; v--;
| ~~~~~^~~~~~~~~~~~~~~~
ソースコード
#include <vector>
#include <utility>
namespace nachia{
struct AdjacencyList{
public:
struct AdjacencyListRange{
using iterator = typename std::vector<int>::const_iterator;
iterator begi, endi;
iterator begin() const { return begi; }
iterator end() const { return endi; }
int size() const { return (int)std::distance(begi, endi); }
const int& operator[](int i) const { return begi[i]; }
};
private:
int mn;
std::vector<int> E;
std::vector<int> I;
public:
AdjacencyList(int n, std::vector<std::pair<int,int>> edges, bool rev){
mn = n;
std::vector<int> buf(n+1, 0);
for(auto [u,v] : edges){ ++buf[u]; if(rev) ++buf[v]; }
for(int i=1; i<=n; i++) buf[i] += buf[i-1];
E.resize(buf[n]);
for(int i=(int)edges.size()-1; i>=0; i--){
auto [u,v] = edges[i];
E[--buf[u]] = v;
if(rev) E[--buf[v]] = u;
}
I = std::move(buf);
}
AdjacencyList(const std::vector<std::vector<int>>& edges = {}){
int n = mn = edges.size();
std::vector<int> buf(n+1, 0);
for(int i=0; i<n; i++) buf[i+1] = buf[i] + edges[i].size();
E.resize(buf[n]);
for(int i=0; i<n; i++) for(int j=0; j<(int)edges[i].size(); j++) E[buf[i]+j] = edges[i][j];
I = std::move(buf);
}
static AdjacencyList from_raw(std::vector<int> targets, std::vector<int> bounds){
AdjacencyList res;
res.mn = bounds.size() - 1;
res.E = std::move(targets);
res.I = std::move(bounds);
return res;
}
AdjacencyListRange operator[](int u) const {
return AdjacencyListRange{ E.begin() + I[u], E.begin() + I[u+1] };
}
int num_vertices() const { return mn; }
int num_edges() const { return E.size(); }
AdjacencyList reversed_edges() const {
AdjacencyList res;
int n = res.mn = mn;
std::vector<int> buf(n+1, 0);
for(int v : E) ++buf[v];
for(int i=1; i<=n; i++) buf[i] += buf[i-1];
res.E.resize(buf[n]);
for(int u=0; u<n; u++) for(int v : operator[](u)) res.E[--buf[v]] = u;
res.I = std::move(buf);
return res;
}
};
struct AdjacencyListEdgeIndexed{
public:
struct Edge { int to; int edgeidx; };
struct AdjacencyListRange{
using iterator = typename std::vector<Edge>::const_iterator;
iterator begi, endi;
iterator begin() const { return begi; }
iterator end() const { return endi; }
int size() const { return (int)std::distance(begi, endi); }
const Edge& operator[](int i) const { return begi[i]; }
};
private:
int mn;
std::vector<Edge> E;
std::vector<int> I;
public:
AdjacencyListEdgeIndexed(int n, const std::vector<std::pair<int,int>>& edges, bool rev){
mn = n;
std::vector<int> buf(n+1, 0);
for(auto [u,v] : edges){ ++buf[u]; if(rev) ++buf[v]; }
for(int i=1; i<=n; i++) buf[i] += buf[i-1];
E.resize(buf[n]);
for(int i=(int)edges.size()-1; i>=0; i--){
auto [u,v] = edges[i];
E[--buf[u]] = { v, i };
if(rev) E[--buf[v]] = { u, i };
}
I = std::move(buf);
}
AdjacencyListEdgeIndexed() : AdjacencyListEdgeIndexed(0, {}, false) {}
AdjacencyListRange operator[](int u) const {
return AdjacencyListRange{ E.begin() + I[u], E.begin() + I[u+1] };
}
int num_vertices() const { return mn; }
int num_edges() const { return E.size(); }
AdjacencyListEdgeIndexed reversed_edges() const {
AdjacencyListEdgeIndexed res;
int n = res.mn = mn;
std::vector<int> buf(n+1, 0);
for(auto [v,i] : E) ++buf[v];
for(int i=1; i<=n; i++) buf[i] += buf[i-1];
res.E.resize(buf[n]);
for(int u=0; u<n; u++) for(auto [v,i] : operator[](u)) res.E[--buf[v]] = {u,i};
res.I = std::move(buf);
return res;
}
};
} // namespace nachia
#include <vector>
#include <iostream>
namespace nachia{
class BiconnectedComponents{
private:
int mn;
int mm;
int mnum_bcs;
std::vector<std::pair<int, int>> medges;
std::vector<int> edgeidx_to_bcidx;
public:
BiconnectedComponents(int n, std::vector<std::pair<int, int>> edges){
std::vector<int> dfsi_to_vtx;
std::vector<int> vtx_to_dfsi;
std::vector<int> linked_over;
std::vector<int> dfs_parent;
mn = n;
int m = edges.size();
medges = std::move(edges);
nachia::AdjacencyListEdgeIndexed adj(n, medges, true);
dfsi_to_vtx.resize(n);
vtx_to_dfsi.resize(n);
dfs_parent.assign(n, -1);
linked_over.assign(n, -1);
int dfsi = 0;
auto dfs1 = [&](int p, auto self)->int {
vtx_to_dfsi[p] = dfsi;
dfsi_to_vtx[dfsi] = p;
int backedge = dfsi;
dfsi++;
for(auto [nx,i] : adj[p]){
if(dfs_parent[nx] != -1) backedge = std::min(backedge, vtx_to_dfsi[nx]);
else{
dfs_parent[nx] = i;
int link = self(nx, self);
backedge = std::min(backedge, link);
linked_over[nx] = (link < vtx_to_dfsi[p]) ? 1 : 0;
}
}
return backedge;
};
for(int i=0; i<n; i++) if(dfs_parent[i] == -1){
dfs_parent[i] = -2;
dfs1(i, dfs1);
}
std::vector<int> res(m);
auto dfs2 = [&](int p, int bcid, int& maxbcid, auto self)-> void {
if(dfs_parent[p] < 0){
for(auto [nx,i] : adj[p]) if(dfs_parent[nx] == i){
bcid = maxbcid++;
self(nx, bcid, maxbcid, self);
}
return;
}
for(auto [nx,i] : adj[p]) if(dfs_parent[nx] != i) res[i] = bcid;
for(auto [nx,i] : adj[p]) if(dfs_parent[nx] == i){
int nx_bcid = bcid;
if(!linked_over[nx]) nx_bcid = maxbcid++;
self(nx, nx_bcid, maxbcid, self);
}
};
int bcid = 0;
for(int i=0; i<n; i++) if(dfs_parent[i] < 0) dfs2(i, -1, bcid, dfs2);
edgeidx_to_bcidx = std::move(res);
mm = m;
mnum_bcs = bcid;
}
int get_num_bcts() const { return mnum_bcs; }
std::vector<std::vector<int>> get_bcs() const {
std::vector<std::vector<int>> res(mnum_bcs);
for(int i=0; i<mm; i++){
res[edgeidx_to_bcidx[i]].push_back(i);
}
return res;
}
AdjacencyList get_bct() const {
int bct_n = mn + mnum_bcs;
AdjacencyList bc_edgelists; {
std::vector<int> buf(mnum_bcs+1);
for(int bci : edgeidx_to_bcidx) ++buf[bci];
for(int i=1; i<=mnum_bcs; i++) buf[i] += buf[i-1];
std::vector<int> E(mnum_bcs+1);
for(int i=0; i<mm; i++) E[--buf[edgeidx_to_bcidx[i]]] = i;
bc_edgelists = AdjacencyList::from_raw(std::move(E), std::move(buf));
}
std::vector<std::pair<int, int>> res(bct_n - 1);
int resi = 0;
std::vector<int> visited(mn);
for(int bci=0; bci<mnum_bcs; bci++){
for(int e : bc_edgelists[bci]){
auto [u,v] = medges[e];
if(!visited[u]){ visited[u] = 1; res[resi++] = {mn+bci,u}; }
if(!visited[v]){ visited[v] = 1; res[resi++] = {mn+bci,v}; }
}
for(int e : bc_edgelists[bci]){
auto [u,v] = medges[e];
visited[u] = visited[v] = 0;
}
}
return AdjacencyList(bct_n, res, true);
}
};
} // namespace nachia
#include <algorithm>
namespace nachia{
struct HeavyLightDecomposition{
private:
int N;
std::vector<int> P;
std::vector<int> PP;
std::vector<int> PD;
std::vector<int> D;
std::vector<int> I;
std::vector<int> rangeL;
std::vector<int> rangeR;
public:
HeavyLightDecomposition(const AdjacencyList& E = AdjacencyList(1, {}, false)){
N = E.num_vertices();
P.assign(N, -1);
I = {0};
I.reserve(N);
for(int i=0; i<(int)I.size(); i++){
int p = I[i];
for(int e : E[p]) if(P[p] != e){
I.push_back(e);
P[e] = p;
}
}
std::vector<int> Z(N, 1);
std::vector<int> nx(N, -1);
PP.resize(N);
for(int i=0; i<N; i++) PP[i] = i;
for(int i=N-1; i>=1; i--){
int p = I[i];
Z[P[p]] += Z[p];
if(nx[P[p]] == -1) nx[P[p]] = p;
if(Z[nx[P[p]]] < Z[p]) nx[P[p]] = p;
}
for(int p : I) if(nx[p] != -1) PP[nx[p]] = p;
PD.assign(N,N);
PD[0] = 0;
D.assign(N,0);
for(int p : I) if(p != 0){
PP[p] = PP[PP[p]];
PD[p] = std::min(PD[PP[p]], PD[P[p]]+1);
D[p] = D[P[p]]+1;
}
rangeL.assign(N,0);
rangeR.assign(N,0);
std::vector<int> dfs;
dfs.push_back(0);
while(dfs.size()){
int p = dfs.back();
rangeR[p] = rangeL[p] + Z[p];
int ir = rangeR[p];
dfs.pop_back();
for(int e : E[p]) if(P[p] != e) if(e != nx[p]){
rangeL[e] = (ir -= Z[e]);
dfs.push_back(e);
}
if(nx[p] != -1){
rangeL[nx[p]] = rangeL[p] + 1;
dfs.push_back(nx[p]);
}
}
I.resize(N);
for(int i=0; i<N; i++) I[rangeL[i]] = i;
}
int depth(int p) const {
return D[p];
}
int lca(int u, int v) const {
if(PD[u] < PD[v]) std::swap(u, v);
while(PD[u] > PD[v]) u = P[PP[u]];
while(PP[u] != PP[v]){ u = P[PP[u]]; v = P[PP[v]]; }
return (D[u] > D[v]) ? v : u;
}
int dist(int u, int v) const {
return depth(u) + depth(v) - depth(lca(u,v)) * 2;
}
std::vector<std::pair<int,int>> path(int r, int c, bool include_root = true, bool reverse_path = false) const {
if(PD[c] < PD[r]) return {};
std::vector<std::pair<int,int>> res(PD[c]-PD[r]+1);
for(int i=0; i<(int)res.size()-1; i++){
res[i] = std::make_pair(rangeL[PP[c]], rangeL[c]+1);
c = P[PP[c]];
}
if(PP[r] != PP[c] || D[r] > D[c]) return {};
res.back() = std::make_pair(rangeL[r]+(include_root?0:1), rangeL[c]+1);
if(res.back().first == res.back().second) res.pop_back();
if(!reverse_path) std::reverse(res.begin(),res.end());
else for(auto& a : res) a = std::make_pair(N - a.second, N - a.first);
return move(res);
}
std::pair<int,int> subtree(int p){
return std::make_pair(rangeL[p], rangeR[p]);
}
int to_seq(int vertex) const {
return rangeL[vertex];
}
int to_vtx(int seqidx) const {
return I[seqidx];
}
int median(int x, int y, int z) const {
return lca(x,y) ^ lca(y,z) ^ lca(x,z);
}
int la(int from, int to, int d) const {
if(d < 0) return -1;
int g = lca(from,to);
int dist0 = D[from] - D[g] * 2 + D[to];
if(dist0 < d) return -1;
int p = from;
if(D[from] - D[g] < d){ p = to; d = dist0 - d; }
while(D[p] - D[PP[p]] < d){
d -= D[p] - D[PP[p]] + 1;
p = P[PP[p]];
}
return I[rangeL[p] - d];
}
};
} // namespace nachia
#include <cstdio>
/*
int main() {
int n; scanf("%d", &n);
int m; scanf("%d", &m);
std::vector<std::pair<int, int>> edges(m);
for(auto& [u,v] : edges) scanf("%d%d", &u, &v);
auto bcs = nachia::BiconnectedComponents(n, edges).get_bcs();
printf("%d\n", (int)bcs.size());
for(auto& bc : bcs){
printf("%d", (int)bc.size());
for(auto v : bc) printf(" %d", v);
printf("\n");
}
return 0;
}
*/
int main() {
int n; scanf("%d", &n);
int m; scanf("%d", &m);
std::vector<std::pair<int, int>> edges(m);
for(auto& [u,v] : edges){ scanf("%d%d", &u, &v); u--; v--; }
auto hld_bct = nachia::HeavyLightDecomposition(nachia::BiconnectedComponents(n, edges).get_bct());
int q; scanf("%d", &q);
for(int queryi=0; queryi<q; queryi++){
int u,v; scanf("%d%d", &u, &v); u--; v--;
int d = hld_bct.dist(u,v);
int ans = std::max(0, d/2-1);
printf("%d\n", ans);
}
return 0;
}
Nachia