結果
| 問題 |
No.1826 Fruits Collecting
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2022-01-28 22:16:25 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 23,066 bytes |
| コンパイル時間 | 2,635 ms |
| コンパイル使用メモリ | 214,380 KB |
| 最終ジャッジ日時 | 2025-01-27 16:46:52 |
|
ジャッジサーバーID (参考情報) |
judge4 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 37 WA * 6 |
ソースコード
// #pragma comment(linker, "/stack:200000000")
#include <bits/stdc++.h>
#include <limits>
#include <type_traits>
namespace suisen {
// ! utility
template <typename ...Types>
using constraints_t = std::enable_if_t<std::conjunction_v<Types...>, std::nullptr_t>;
template <bool cond_v, typename Then, typename OrElse>
constexpr decltype(auto) constexpr_if(Then&& then, OrElse&& or_else) {
if constexpr (cond_v) {
return std::forward<Then>(then);
} else {
return std::forward<OrElse>(or_else);
}
}
// ! function
template <typename ReturnType, typename Callable, typename ...Args>
using is_same_as_invoke_result = std::is_same<std::invoke_result_t<Callable, Args...>, ReturnType>;
template <typename F, typename T>
using is_uni_op = is_same_as_invoke_result<T, F, T>;
template <typename F, typename T>
using is_bin_op = is_same_as_invoke_result<T, F, T, T>;
template <typename Comparator, typename T>
using is_comparator = std::is_same<std::invoke_result_t<Comparator, T, T>, bool>;
// ! integral
template <typename T, typename = constraints_t<std::is_integral<T>>>
constexpr int bit_num = std::numeric_limits<std::make_unsigned_t<T>>::digits;
template <typename T, unsigned int n>
struct is_nbit { static constexpr bool value = bit_num<T> == n; };
template <typename T, unsigned int n>
static constexpr bool is_nbit_v = is_nbit<T, n>::value;
// ?
template <typename T>
struct safely_multipliable {};
template <>
struct safely_multipliable<int> { using type = long long; };
template <>
struct safely_multipliable<long long> { using type = __int128_t; };
template <>
struct safely_multipliable<float> { using type = float; };
template <>
struct safely_multipliable<double> { using type = double; };
template <>
struct safely_multipliable<long double> { using type = long double; };
template <typename T>
using safely_multipliable_t = typename safely_multipliable<T>::type;
} // namespace suisen
// ! type aliases
using i128 = __int128_t;
using u128 = __uint128_t;
using ll = long long;
using uint = unsigned int;
using ull = unsigned long long;
template <typename T> using vec = std::vector<T>;
template <typename T> using vec2 = vec<vec <T>>;
template <typename T> using vec3 = vec<vec2<T>>;
template <typename T> using vec4 = vec<vec3<T>>;
template <typename T>
using pq_greater = std::priority_queue<T, std::vector<T>, std::greater<T>>;
template <typename T, typename U>
using umap = std::unordered_map<T, U>;
// ! macros (capital: internal macro)
#define OVERLOAD2(_1,_2,name,...) name
#define OVERLOAD3(_1,_2,_3,name,...) name
#define OVERLOAD4(_1,_2,_3,_4,name,...) name
#define REP4(i,l,r,s) for(std::remove_reference_t<std::remove_const_t<decltype(r)>>i=(l);i<(r);i+=(s))
#define REP3(i,l,r) REP4(i,l,r,1)
#define REP2(i,n) REP3(i,0,n)
#define REPINF3(i,l,s) for(std::remove_reference_t<std::remove_const_t<decltype(l)>>i=(l);;i+=(s))
#define REPINF2(i,l) REPINF3(i,l,1)
#define REPINF1(i) REPINF2(i,0)
#define RREP4(i,l,r,s) for(std::remove_reference_t<std::remove_const_t<decltype(r)>>i=(l)+fld((r)-(l)-1,s)*(s);i>=(l);i-=(s))
#define RREP3(i,l,r) RREP4(i,l,r,1)
#define RREP2(i,n) RREP3(i,0,n)
#define rep(...) OVERLOAD4(__VA_ARGS__, REP4 , REP3 , REP2 )(__VA_ARGS__)
#define rrep(...) OVERLOAD4(__VA_ARGS__, RREP4 , RREP3 , RREP2 )(__VA_ARGS__)
#define repinf(...) OVERLOAD3(__VA_ARGS__, REPINF3, REPINF2, REPINF1)(__VA_ARGS__)
#define CAT_I(a, b) a##b
#define CAT(a, b) CAT_I(a, b)
#define UNIQVAR(tag) CAT(tag, __LINE__)
#define loop(n) for (std::remove_reference_t<std::remove_const_t<decltype(n)>> UNIQVAR(loop_variable) = n; UNIQVAR(loop_variable) --> 0;)
#define all(iterable) (iterable).begin(), (iterable).end()
#define input(type, ...) type __VA_ARGS__; read(__VA_ARGS__)
// ! I/O utilities
// pair
template <typename T, typename U>
std::ostream& operator<<(std::ostream& out, const std::pair<T, U> &a) {
return out << a.first << ' ' << a.second;
}
// tuple
template <unsigned int N = 0, typename ...Args>
std::ostream& operator<<(std::ostream& out, const std::tuple<Args...> &a) {
if constexpr (N >= std::tuple_size_v<std::tuple<Args...>>) {
return out;
} else {
out << std::get<N>(a);
if constexpr (N + 1 < std::tuple_size_v<std::tuple<Args...>>) {
out << ' ';
}
return operator<<<N + 1>(out, a);
}
}
// vector
template <typename T>
std::ostream& operator<<(std::ostream& out, const std::vector<T> &a) {
for (auto it = a.begin(); it != a.end();) {
out << *it;
if (++it != a.end()) out << ' ';
}
return out;
}
// array
template <typename T, size_t N>
std::ostream& operator<<(std::ostream& out, const std::array<T, N> &a) {
for (auto it = a.begin(); it != a.end();) {
out << *it;
if (++it != a.end()) out << ' ';
}
return out;
}
inline void print() { std::cout << '\n'; }
template <typename Head, typename... Tail>
inline void print(const Head &head, const Tail &...tails) {
std::cout << head;
if (sizeof...(tails)) std::cout << ' ';
print(tails...);
}
template <typename Iterable>
auto print_all(const Iterable& v, std::string sep = " ", std::string end = "\n") -> decltype(std::cout << *v.begin(), void()) {
for (auto it = v.begin(); it != v.end();) {
std::cout << *it;
if (++it != v.end()) std::cout << sep;
}
std::cout << end;
}
// pair
template <typename T, typename U>
std::istream& operator>>(std::istream& in, std::pair<T, U> &a) {
return in >> a.first >> a.second;
}
// tuple
template <unsigned int N = 0, typename ...Args>
std::istream& operator>>(std::istream& in, std::tuple<Args...> &a) {
if constexpr (N >= std::tuple_size_v<std::tuple<Args...>>) {
return in;
} else {
return operator>><N + 1>(in >> std::get<N>(a), a);
}
}
// vector
template <typename T>
std::istream& operator>>(std::istream& in, std::vector<T> &a) {
for (auto it = a.begin(); it != a.end(); ++it) in >> *it;
return in;
}
// array
template <typename T, size_t N>
std::istream& operator>>(std::istream& in, std::array<T, N> &a) {
for (auto it = a.begin(); it != a.end(); ++it) in >> *it;
return in;
}
template <typename ...Args>
void read(Args &...args) {
( std::cin >> ... >> args );
}
// ! integral utilities
// Returns pow(-1, n)
template <typename T>
constexpr inline int pow_m1(T n) {
return -(n & 1) | 1;
}
// Returns pow(-1, n)
template <>
constexpr inline int pow_m1<bool>(bool n) {
return -int(n) | 1;
}
// Returns floor(x / y)
template <typename T>
constexpr inline T fld(const T x, const T y) {
return (x ^ y) >= 0 ? x / y : (x - (y + pow_m1(y >= 0))) / y;
}
template <typename T>
constexpr inline T cld(const T x, const T y) {
return (x ^ y) <= 0 ? x / y : (x + (y + pow_m1(y >= 0))) / y;
}
template <typename T, suisen::constraints_t<suisen::is_nbit<T, 16>> = nullptr>
constexpr inline int popcount(const T x) { return __builtin_popcount(x); }
template <typename T, suisen::constraints_t<suisen::is_nbit<T, 32>> = nullptr>
constexpr inline int popcount(const T x) { return __builtin_popcount(x); }
template <typename T, suisen::constraints_t<suisen::is_nbit<T, 64>> = nullptr>
constexpr inline int popcount(const T x) { return __builtin_popcountll(x); }
template <typename T, suisen::constraints_t<suisen::is_nbit<T, 16>> = nullptr>
constexpr inline int count_lz(const T x) { return x ? __builtin_clz(x) : suisen::bit_num<T>; }
template <typename T, suisen::constraints_t<suisen::is_nbit<T, 32>> = nullptr>
constexpr inline int count_lz(const T x) { return x ? __builtin_clz(x) : suisen::bit_num<T>; }
template <typename T, suisen::constraints_t<suisen::is_nbit<T, 64>> = nullptr>
constexpr inline int count_lz(const T x) { return x ? __builtin_clzll(x) : suisen::bit_num<T>; }
template <typename T, suisen::constraints_t<suisen::is_nbit<T, 16>> = nullptr>
constexpr inline int count_tz(const T x) { return x ? __builtin_ctz(x) : suisen::bit_num<T>; }
template <typename T, suisen::constraints_t<suisen::is_nbit<T, 32>> = nullptr>
constexpr inline int count_tz(const T x) { return x ? __builtin_ctz(x) : suisen::bit_num<T>; }
template <typename T, suisen::constraints_t<suisen::is_nbit<T, 64>> = nullptr>
constexpr inline int count_tz(const T x) { return x ? __builtin_ctzll(x) : suisen::bit_num<T>; }
template <typename T>
constexpr inline int floor_log2(const T x) { return suisen::bit_num<T> - 1 - count_lz(x); }
template <typename T>
constexpr inline int ceil_log2(const T x) { return floor_log2(x) + ((x & -x) != x); }
template <typename T>
constexpr inline int kth_bit(const T x, const unsigned int k) { return (x >> k) & 1; }
template <typename T>
constexpr inline int parity(const T x) { return popcount(x) & 1; }
struct all_subset {
struct all_subset_iter {
const int s; int t;
constexpr all_subset_iter(int s) : s(s), t(s + 1) {}
constexpr auto operator*() const { return t; }
constexpr auto operator++() {}
constexpr auto operator!=(std::nullptr_t) { return t ? (--t &= s, true) : false; }
};
int s;
constexpr all_subset(int s) : s(s) {}
constexpr auto begin() { return all_subset_iter(s); }
constexpr auto end() { return nullptr; }
};
// ! container
template <typename T, typename Comparator, suisen::constraints_t<suisen::is_comparator<Comparator, T>> = nullptr>
auto priqueue_comp(const Comparator comparator) {
return std::priority_queue<T, std::vector<T>, Comparator>(comparator);
}
template <typename Iterable>
auto isize(const Iterable &iterable) -> decltype(int(iterable.size())) {
return iterable.size();
}
template <typename T, typename Gen, suisen::constraints_t<suisen::is_same_as_invoke_result<T, Gen, int>> = nullptr>
auto generate_vector(int n, Gen generator) {
std::vector<T> v(n);
for (int i = 0; i < n; ++i) v[i] = generator(i);
return v;
}
template <typename T>
auto generate_range_vector(T l, T r) {
return generate_vector(r - l, [l](int i) { return l + i; });
}
template <typename T>
auto generate_range_vector(T n) {
return generate_range_vector(0, n);
}
template <typename T>
void sort_unique_erase(std::vector<T> &a) {
std::sort(a.begin(), a.end());
a.erase(std::unique(a.begin(), a.end()), a.end());
}
template <typename InputIterator, typename BiConsumer>
auto foreach_adjacent_values(InputIterator first, InputIterator last, BiConsumer f) -> decltype(f(*first++, *last), void()) {
if (first != last) for (auto itr = first, itl = itr++; itr != last; itl = itr++) f(*itl, *itr);
}
template <typename Container, typename BiConsumer>
auto foreach_adjacent_values(Container c, BiConsumer f) -> decltype(c.begin(), c.end(), void()){
foreach_adjacent_values(c.begin(), c.end(), f);
}
// ! other utilities
// x <- min(x, y). returns true iff `x` has chenged.
template <typename T>
inline bool chmin(T &x, const T &y) {
if (y >= x) return false;
x = y;
return true;
}
// x <- max(x, y). returns true iff `x` has chenged.
template <typename T>
inline bool chmax(T &x, const T &y) {
if (y <= x) return false;
x = y;
return true;
}
namespace suisen {}
using namespace suisen;
using namespace std;
struct io_setup {
io_setup(int precision = 20) {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
std::cout << std::fixed << std::setprecision(precision);
}
} io_setup_ {};
// ! code from here
#include <algorithm>
#include <cassert>
#include <vector>
namespace suisen {
template <typename T>
class CoordinateCompressorBuilder {
public:
struct Compressor {
public:
static constexpr int absent = -1;
// default constructor
Compressor() : _xs(std::vector<T>{}) {}
// Construct from strictly sorted vector
Compressor(const std::vector<T> &xs) : _xs(xs) {
assert(is_strictly_sorted(xs));
}
// Return the number of distinct keys.
int size() const {
return _xs.size();
}
// Check if the element is registered.
bool has_key(const T &e) const {
return std::binary_search(_xs.begin(), _xs.end(), e);
}
// Compress the element. if not registered, returns `default_value`. (default: Compressor::absent)
int comp(const T &e, int default_value = absent) const {
const int res = min_geq_index(e);
return res != size() and _xs[res] == e ? res : default_value;
}
// Restore the element from the index.
T decomp(const int compressed_index) const {
return _xs[compressed_index];
}
// Compress the element. Equivalent to call `comp(e)`
int operator[](const T &e) const {
return comp(e);
}
// Return the minimum registered value greater than `e`. if not exists, return `default_value`.
T min_gt(const T &e, const T &default_value) const {
auto it = std::upper_bound(_xs.begin(), _xs.end(), e);
return it == _xs.end() ? default_value : *it;
}
// Return the minimum registered value greater than or equal to `e`. if not exists, return `default_value`.
T min_geq(const T &e, const T &default_value) const {
auto it = std::lower_bound(_xs.begin(), _xs.end(), e);
return it == _xs.end() ? default_value : *it;
}
// Return the maximum registered value less than `e`. if not exists, return `default_value`
T max_lt(const T &e, const T &default_value) const {
auto it = std::upper_bound(_xs.rbegin(), _xs.rend(), e);
return it == _xs.rend() ? default_value : *it;
}
// Return the maximum registered value less than or equal to `e`. if not exists, return `default_value`
T max_leq(const T &e, const T &default_value) const {
auto it = std::lower_bound(_xs.rbegin(), _xs.rend(), e);
return it == _xs.rend() ? default_value : *it;
}
// Return the compressed index of the minimum registered value greater than `e`. if not exists, return `compressor.size()`.
int min_gt_index(const T &e) const {
return std::upper_bound(_xs.begin(), _xs.end(), e) - _xs.begin();
}
// Return the compressed index of the minimum registered value greater than or equal to `e`. if not exists, return `compressor.size()`.
int min_geq_index(const T &e) const {
return std::lower_bound(_xs.begin(), _xs.end(), e) - _xs.begin();
}
// Return the compressed index of the maximum registered value less than `e`. if not exists, return -1.
int max_lt_index(const T &e) const {
return int(_xs.rend() - std::upper_bound(_xs.rbegin(), _xs.rend(), e)) - 1;
}
// Return the compressed index of the maximum registered value less than or equal to `e`. if not exists, return -1.
int max_leq_index(const T &e) const {
return int(_xs.rend() - std::lower_bound(_xs.rbegin(), _xs.rend(), e)) - 1;
}
private:
std::vector<T> _xs;
static bool is_strictly_sorted(const std::vector<T> &v) {
return std::adjacent_find(v.begin(), v.end(), std::greater_equal<T>()) == v.end();
}
};
CoordinateCompressorBuilder() : _xs(std::vector<T>{}) {}
explicit CoordinateCompressorBuilder(const std::vector<T> &xs) : _xs(xs) {}
explicit CoordinateCompressorBuilder(std::vector<T> &&xs) : _xs(std::move(xs)) {}
template <typename Gen, constraints_t<is_same_as_invoke_result<T, Gen, int>> = nullptr>
CoordinateCompressorBuilder(const int n, Gen generator) {
reserve(n);
for (int i = 0; i < n; ++i) push(generator(i));
}
// Attempt to preallocate enough memory for specified number of elements.
void reserve(int n) {
_xs.reserve(n);
}
// Add data.
void push(const T &first) {
_xs.push_back(first);
}
// Add data.
void push(T &&first) {
_xs.push_back(std::move(first));
}
// Add data in the range of [first, last).
template <typename Iterator>
auto push(const Iterator &first, const Iterator &last) -> decltype(std::vector<T>{}.push_back(*first), void()) {
for (auto it = first; it != last; ++it) _xs.push_back(*it);
}
// Add all data in the container. Equivalent to `push(iterable.begin(), iterable.end())`.
template <typename Iterable>
auto push(const Iterable &iterable) -> decltype(std::vector<T>{}.push_back(*iterable.begin()), void()) {
push(iterable.begin(), iterable.end());
}
// Add data.
template <typename ...Args>
void emplace(Args &&...args) {
_xs.emplace_back(std::forward<Args>(args)...);
}
// Build compressor.
auto build() {
std::sort(_xs.begin(), _xs.end()), _xs.erase(std::unique(_xs.begin(), _xs.end()), _xs.end());
return Compressor {_xs};
}
// Build compressor from vector.
static auto build(const std::vector<T> &xs) {
return CoordinateCompressorBuilder(xs).build();
}
// Build compressor from vector.
static auto build(std::vector<T> &&xs) {
return CoordinateCompressorBuilder(std::move(xs)).build();
}
// Build compressor from generator.
template <typename Gen, constraints_t<is_same_as_invoke_result<T, Gen, int>> = nullptr>
static auto build(const int n, Gen generator) {
return CoordinateCompressorBuilder<T>(n, generator).build();
}
private:
std::vector<T> _xs;
};
} // namespace suisen
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
// @param n `0 <= n`
// @return minimum non-negative `x` s.t. `n <= 2**x`
int ceil_pow2(int n) {
int x = 0;
while ((1U << x) < (unsigned int)(n)) x++;
return x;
}
// @param n `1 <= n`
// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
constexpr int bsf_constexpr(unsigned int n) {
int x = 0;
while (!(n & (1 << x))) x++;
return x;
}
// @param n `1 <= n`
// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
int bsf(unsigned int n) {
#ifdef _MSC_VER
unsigned long index;
_BitScanForward(&index, n);
return index;
#else
return __builtin_ctz(n);
#endif
}
} // namespace internal
} // namespace atcoder
namespace atcoder {
template <class S, S (*op)(S, S), S (*e)()> struct segtree {
public:
segtree() : segtree(0) {}
explicit segtree(int n) : segtree(std::vector<S>(n, e())) {}
explicit segtree(const std::vector<S>& v) : _n(int(v.size())) {
log = internal::ceil_pow2(_n);
size = 1 << log;
d = std::vector<S>(2 * size, e());
for (int i = 0; i < _n; i++) d[size + i] = v[i];
for (int i = size - 1; i >= 1; i--) {
update(i);
}
}
void set(int p, S x) {
assert(0 <= p && p < _n);
p += size;
d[p] = x;
for (int i = 1; i <= log; i++) update(p >> i);
}
S get(int p) const {
assert(0 <= p && p < _n);
return d[p + size];
}
S prod(int l, int r) const {
assert(0 <= l && l <= r && r <= _n);
S sml = e(), smr = e();
l += size;
r += size;
while (l < r) {
if (l & 1) sml = op(sml, d[l++]);
if (r & 1) smr = op(d[--r], smr);
l >>= 1;
r >>= 1;
}
return op(sml, smr);
}
S all_prod() const { return d[1]; }
template <bool (*f)(S)> int max_right(int l) const {
return max_right(l, [](S x) { return f(x); });
}
template <class F> int max_right(int l, F f) const {
assert(0 <= l && l <= _n);
assert(f(e()));
if (l == _n) return _n;
l += size;
S sm = e();
do {
while (l % 2 == 0) l >>= 1;
if (!f(op(sm, d[l]))) {
while (l < size) {
l = (2 * l);
if (f(op(sm, d[l]))) {
sm = op(sm, d[l]);
l++;
}
}
return l - size;
}
sm = op(sm, d[l]);
l++;
} while ((l & -l) != l);
return _n;
}
template <bool (*f)(S)> int min_left(int r) const {
return min_left(r, [](S x) { return f(x); });
}
template <class F> int min_left(int r, F f) const {
assert(0 <= r && r <= _n);
assert(f(e()));
if (r == 0) return 0;
r += size;
S sm = e();
do {
r--;
while (r > 1 && (r % 2)) r >>= 1;
if (!f(op(d[r], sm))) {
while (r < size) {
r = (2 * r + 1);
if (f(op(d[r], sm))) {
sm = op(d[r], sm);
r--;
}
}
return r + 1 - size;
}
sm = op(d[r], sm);
} while ((r & -r) != r);
return 0;
}
private:
int _n, size, log;
std::vector<S> d;
void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
};
} // namespace atcoder
constexpr long long inf = numeric_limits<long long>::max() / 2;
long long op(long long x, long long y) {
return max(x, y);
}
long long e() {
return -inf;
}
int main() {
input(int, n);
vector<tuple<long long, long long, long long>> items(n);
CoordinateCompressorBuilder<long long> builder;
read(items);
for (auto &[t, x, v] : items) {
long long a = x + t;
long long b = x - t;
t = a, x = b;
builder.push(b);
}
builder.push(0);
auto comp = builder.build();
sort(all(items));
// print("sorted");
// print_all(items, "\n");
const int m = comp.size();
atcoder::segtree<long long, op, e> seg(m);
bool init = false;
for (auto &[u, v, w] : items) {
if (not init and (u > 0 or (u == 0 and v >= 0))) {
init = true;
seg.set(comp[0], 0);
}
int cv = comp[v];
seg.set(cv, max(seg.get(cv), seg.prod(cv, m) + w));
// assert(comp.decomp(cv) == v);
// print(u, v, seg.get(cv));
}
print(seg.all_prod());
return 0;
}