結果

問題 No.1826 Fruits Collecting
ユーザー suisensuisen
提出日時 2022-01-28 22:17:28
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 23,272 bytes
コンパイル時間 2,243 ms
コンパイル使用メモリ 219,720 KB
実行使用メモリ 16,824 KB
最終ジャッジ日時 2024-06-09 15:28:43
合計ジャッジ時間 7,239 ms
ジャッジサーバーID
(参考情報)
judge5 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 3 ms
5,376 KB
testcase_03 AC 3 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 60 ms
9,160 KB
testcase_06 AC 103 ms
13,640 KB
testcase_07 AC 70 ms
9,868 KB
testcase_08 AC 8 ms
5,376 KB
testcase_09 AC 102 ms
11,352 KB
testcase_10 AC 67 ms
9,620 KB
testcase_11 AC 64 ms
9,424 KB
testcase_12 AC 28 ms
6,048 KB
testcase_13 AC 14 ms
5,376 KB
testcase_14 AC 21 ms
5,376 KB
testcase_15 AC 152 ms
16,656 KB
testcase_16 AC 161 ms
16,824 KB
testcase_17 AC 162 ms
16,824 KB
testcase_18 AC 154 ms
16,824 KB
testcase_19 AC 157 ms
16,684 KB
testcase_20 AC 157 ms
16,792 KB
testcase_21 AC 157 ms
16,692 KB
testcase_22 AC 153 ms
16,692 KB
testcase_23 AC 156 ms
16,808 KB
testcase_24 AC 154 ms
16,820 KB
testcase_25 WA -
testcase_26 WA -
testcase_27 AC 2 ms
5,376 KB
testcase_28 AC 1 ms
5,376 KB
testcase_29 AC 1 ms
5,376 KB
testcase_30 AC 33 ms
6,404 KB
testcase_31 AC 65 ms
9,452 KB
testcase_32 AC 32 ms
6,352 KB
testcase_33 AC 107 ms
13,736 KB
testcase_34 AC 90 ms
10,748 KB
testcase_35 AC 21 ms
5,376 KB
testcase_36 AC 103 ms
13,612 KB
testcase_37 AC 66 ms
10,452 KB
testcase_38 AC 45 ms
9,068 KB
testcase_39 WA -
testcase_40 AC 86 ms
12,012 KB
testcase_41 AC 19 ms
5,376 KB
testcase_42 AC 4 ms
5,376 KB
testcase_43 AC 2 ms
5,376 KB
testcase_44 AC 1 ms
5,376 KB
testcase_45 AC 2 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

// #pragma comment(linker, "/stack:200000000")

#include <bits/stdc++.h>

#include <limits>
#include <type_traits>

namespace suisen {
// ! utility
template <typename ...Types>
using constraints_t = std::enable_if_t<std::conjunction_v<Types...>, std::nullptr_t>;
template <bool cond_v, typename Then, typename OrElse>
constexpr decltype(auto) constexpr_if(Then&& then, OrElse&& or_else) {
    if constexpr (cond_v) {
        return std::forward<Then>(then);
    } else {
        return std::forward<OrElse>(or_else);
    }
}

// ! function
template <typename ReturnType, typename Callable, typename ...Args>
using is_same_as_invoke_result = std::is_same<std::invoke_result_t<Callable, Args...>, ReturnType>;
template <typename F, typename T>
using is_uni_op = is_same_as_invoke_result<T, F, T>;
template <typename F, typename T>
using is_bin_op = is_same_as_invoke_result<T, F, T, T>;

template <typename Comparator, typename T>
using is_comparator = std::is_same<std::invoke_result_t<Comparator, T, T>, bool>;

// ! integral
template <typename T, typename = constraints_t<std::is_integral<T>>>
constexpr int bit_num = std::numeric_limits<std::make_unsigned_t<T>>::digits;
template <typename T, unsigned int n>
struct is_nbit { static constexpr bool value = bit_num<T> == n; };
template <typename T, unsigned int n>
static constexpr bool is_nbit_v = is_nbit<T, n>::value;

// ?
template <typename T>
struct safely_multipliable {};
template <>
struct safely_multipliable<int> { using type = long long; };
template <>
struct safely_multipliable<long long> { using type = __int128_t; };
template <>
struct safely_multipliable<float> { using type = float; };
template <>
struct safely_multipliable<double> { using type = double; };
template <>
struct safely_multipliable<long double> { using type = long double; };
template <typename T>
using safely_multipliable_t = typename safely_multipliable<T>::type;

} // namespace suisen

// ! type aliases
using i128 = __int128_t;
using u128 = __uint128_t;
using ll = long long;
using uint = unsigned int;
using ull  = unsigned long long;

template <typename T> using vec  = std::vector<T>;
template <typename T> using vec2 = vec<vec <T>>;
template <typename T> using vec3 = vec<vec2<T>>;
template <typename T> using vec4 = vec<vec3<T>>;

template <typename T>
using pq_greater = std::priority_queue<T, std::vector<T>, std::greater<T>>;
template <typename T, typename U>
using umap = std::unordered_map<T, U>;

// ! macros (capital: internal macro)
#define OVERLOAD2(_1,_2,name,...) name
#define OVERLOAD3(_1,_2,_3,name,...) name
#define OVERLOAD4(_1,_2,_3,_4,name,...) name

#define REP4(i,l,r,s)  for(std::remove_reference_t<std::remove_const_t<decltype(r)>>i=(l);i<(r);i+=(s))
#define REP3(i,l,r)    REP4(i,l,r,1)
#define REP2(i,n)      REP3(i,0,n)
#define REPINF3(i,l,s) for(std::remove_reference_t<std::remove_const_t<decltype(l)>>i=(l);;i+=(s))
#define REPINF2(i,l)   REPINF3(i,l,1)
#define REPINF1(i)     REPINF2(i,0)
#define RREP4(i,l,r,s) for(std::remove_reference_t<std::remove_const_t<decltype(r)>>i=(l)+fld((r)-(l)-1,s)*(s);i>=(l);i-=(s))
#define RREP3(i,l,r)   RREP4(i,l,r,1)
#define RREP2(i,n)     RREP3(i,0,n)

#define rep(...)    OVERLOAD4(__VA_ARGS__, REP4   , REP3   , REP2   )(__VA_ARGS__)
#define rrep(...)   OVERLOAD4(__VA_ARGS__, RREP4  , RREP3  , RREP2  )(__VA_ARGS__)
#define repinf(...) OVERLOAD3(__VA_ARGS__, REPINF3, REPINF2, REPINF1)(__VA_ARGS__)

#define CAT_I(a, b) a##b
#define CAT(a, b) CAT_I(a, b)
#define UNIQVAR(tag) CAT(tag, __LINE__)
#define loop(n) for (std::remove_reference_t<std::remove_const_t<decltype(n)>> UNIQVAR(loop_variable) = n; UNIQVAR(loop_variable) --> 0;)

#define all(iterable) (iterable).begin(), (iterable).end()
#define input(type, ...) type __VA_ARGS__; read(__VA_ARGS__)

// ! I/O utilities

// pair
template <typename T, typename U>
std::ostream& operator<<(std::ostream& out, const std::pair<T, U> &a) {
    return out << a.first << ' ' << a.second;
}
// tuple
template <unsigned int N = 0, typename ...Args>
std::ostream& operator<<(std::ostream& out, const std::tuple<Args...> &a) {
    if constexpr (N >= std::tuple_size_v<std::tuple<Args...>>) {
        return out;
    } else {
        out << std::get<N>(a);
        if constexpr (N + 1 < std::tuple_size_v<std::tuple<Args...>>) {
            out << ' ';
        }
        return operator<<<N + 1>(out, a);
    }
}
// vector
template <typename T>
std::ostream& operator<<(std::ostream& out, const std::vector<T> &a) {
    for (auto it = a.begin(); it != a.end();) {
        out << *it;
        if (++it != a.end()) out << ' ';
    }
    return out;
}
// array
template <typename T, size_t N>
std::ostream& operator<<(std::ostream& out, const std::array<T, N> &a) {
    for (auto it = a.begin(); it != a.end();) {
        out << *it;
        if (++it != a.end()) out << ' ';
    }
    return out;
}
inline void print() { std::cout << '\n'; }
template <typename Head, typename... Tail>
inline void print(const Head &head, const Tail &...tails) {
    std::cout << head;
    if (sizeof...(tails)) std::cout << ' ';
    print(tails...);
}
template <typename Iterable>
auto print_all(const Iterable& v, std::string sep = " ", std::string end = "\n") -> decltype(std::cout << *v.begin(), void()) {
    for (auto it = v.begin(); it != v.end();) {
        std::cout << *it;
        if (++it != v.end()) std::cout << sep;
    }
    std::cout << end;
}

// pair
template <typename T, typename U>
std::istream& operator>>(std::istream& in, std::pair<T, U> &a) {
    return in >> a.first >> a.second;
}
// tuple
template <unsigned int N = 0, typename ...Args>
std::istream& operator>>(std::istream& in, std::tuple<Args...> &a) {
    if constexpr (N >= std::tuple_size_v<std::tuple<Args...>>) {
        return in;
    } else {
        return operator>><N + 1>(in >> std::get<N>(a), a);
    }
}
// vector
template <typename T>
std::istream& operator>>(std::istream& in, std::vector<T> &a) {
    for (auto it = a.begin(); it != a.end(); ++it) in >> *it;
    return in;
}
// array
template <typename T, size_t N>
std::istream& operator>>(std::istream& in, std::array<T, N> &a) {
    for (auto it = a.begin(); it != a.end(); ++it) in >> *it;
    return in;
}
template <typename ...Args>
void read(Args &...args) {
    ( std::cin >> ... >> args );
}

// ! integral utilities

// Returns pow(-1, n)
template <typename T>
constexpr inline int pow_m1(T n) {
    return -(n & 1) | 1;
}
// Returns pow(-1, n)
template <>
constexpr inline int pow_m1<bool>(bool n) {
    return -int(n) | 1;
}

// Returns floor(x / y)
template <typename T>
constexpr inline T fld(const T x, const T y) {
    return (x ^ y) >= 0 ? x / y : (x - (y + pow_m1(y >= 0))) / y;
}
template <typename T>
constexpr inline T cld(const T x, const T y) {
    return (x ^ y) <= 0 ? x / y : (x + (y + pow_m1(y >= 0))) / y;
}

template <typename T, suisen::constraints_t<suisen::is_nbit<T, 16>> = nullptr>
constexpr inline int popcount(const T x) { return __builtin_popcount(x); }
template <typename T, suisen::constraints_t<suisen::is_nbit<T, 32>> = nullptr>
constexpr inline int popcount(const T x) { return __builtin_popcount(x); }
template <typename T, suisen::constraints_t<suisen::is_nbit<T, 64>> = nullptr>
constexpr inline int popcount(const T x) { return __builtin_popcountll(x); }
template <typename T, suisen::constraints_t<suisen::is_nbit<T, 16>> = nullptr>
constexpr inline int count_lz(const T x) { return x ? __builtin_clz(x)   : suisen::bit_num<T>; }
template <typename T, suisen::constraints_t<suisen::is_nbit<T, 32>> = nullptr>
constexpr inline int count_lz(const T x) { return x ? __builtin_clz(x)   : suisen::bit_num<T>; }
template <typename T, suisen::constraints_t<suisen::is_nbit<T, 64>> = nullptr>
constexpr inline int count_lz(const T x) { return x ? __builtin_clzll(x) : suisen::bit_num<T>; }
template <typename T, suisen::constraints_t<suisen::is_nbit<T, 16>> = nullptr>
constexpr inline int count_tz(const T x) { return x ? __builtin_ctz(x)   : suisen::bit_num<T>; }
template <typename T, suisen::constraints_t<suisen::is_nbit<T, 32>> = nullptr>
constexpr inline int count_tz(const T x) { return x ? __builtin_ctz(x)   : suisen::bit_num<T>; }
template <typename T, suisen::constraints_t<suisen::is_nbit<T, 64>> = nullptr>
constexpr inline int count_tz(const T x) { return x ? __builtin_ctzll(x) : suisen::bit_num<T>; }
template <typename T>
constexpr inline int floor_log2(const T x) { return suisen::bit_num<T> - 1 - count_lz(x); }
template <typename T>
constexpr inline int ceil_log2(const T x)  { return floor_log2(x) + ((x & -x) != x); }
template <typename T>
constexpr inline int kth_bit(const T x, const unsigned int k) { return (x >> k) & 1; }
template <typename T>
constexpr inline int parity(const T x) { return popcount(x) & 1; }

struct all_subset {
    struct all_subset_iter {
        const int s; int t;
        constexpr all_subset_iter(int s) : s(s), t(s + 1) {}
        constexpr auto operator*() const { return t; }
        constexpr auto operator++() {}
        constexpr auto operator!=(std::nullptr_t) { return t ? (--t &= s, true) : false; }
    };
    int s;
    constexpr all_subset(int s) : s(s) {}
    constexpr auto begin() { return all_subset_iter(s); }
    constexpr auto end()   { return nullptr; }
};

// ! container

template <typename T, typename Comparator, suisen::constraints_t<suisen::is_comparator<Comparator, T>> = nullptr>
auto priqueue_comp(const Comparator comparator) {
    return std::priority_queue<T, std::vector<T>, Comparator>(comparator);
}

template <typename Iterable>
auto isize(const Iterable &iterable) -> decltype(int(iterable.size())) {
    return iterable.size();
}

template <typename T, typename Gen, suisen::constraints_t<suisen::is_same_as_invoke_result<T, Gen, int>> = nullptr>
auto generate_vector(int n, Gen generator) {
    std::vector<T> v(n);
    for (int i = 0; i < n; ++i) v[i] = generator(i);
    return v;
}
template <typename T>
auto generate_range_vector(T l, T r) {
    return generate_vector(r - l, [l](int i) { return l + i; });
}
template <typename T>
auto generate_range_vector(T n) {
    return generate_range_vector(0, n);
}

template <typename T>
void sort_unique_erase(std::vector<T> &a) {
    std::sort(a.begin(), a.end());
    a.erase(std::unique(a.begin(), a.end()), a.end());
}

template <typename InputIterator, typename BiConsumer>
auto foreach_adjacent_values(InputIterator first, InputIterator last, BiConsumer f) -> decltype(f(*first++, *last), void()) {
    if (first != last) for (auto itr = first, itl = itr++; itr != last; itl = itr++) f(*itl, *itr);
}
template <typename Container, typename BiConsumer>
auto foreach_adjacent_values(Container c, BiConsumer f) -> decltype(c.begin(), c.end(), void()){
    foreach_adjacent_values(c.begin(), c.end(), f);
}

// ! other utilities

// x <- min(x, y). returns true iff `x` has chenged.
template <typename T>
inline bool chmin(T &x, const T &y) {
    if (y >= x) return false;
    x = y;
    return true;
}
// x <- max(x, y). returns true iff `x` has chenged.
template <typename T>
inline bool chmax(T &x, const T &y) {
    if (y <= x) return false;
    x = y;
    return true;
}

namespace suisen {}
using namespace suisen;
using namespace std;

struct io_setup {
    io_setup(int precision = 20) {
        std::ios::sync_with_stdio(false);
        std::cin.tie(nullptr);
        std::cout << std::fixed << std::setprecision(precision);
    }
} io_setup_ {};

// ! code from here

#include <algorithm>
#include <cassert>
#include <vector>

namespace suisen {
template <typename T>
class CoordinateCompressorBuilder {
    public:
        struct Compressor {
            public:
                static constexpr int absent = -1;

                // default constructor
                Compressor() : _xs(std::vector<T>{}) {}
                // Construct from strictly sorted vector
                Compressor(const std::vector<T> &xs) : _xs(xs) {
                    assert(is_strictly_sorted(xs));
                }

                // Return the number of distinct keys.
                int size() const {
                    return _xs.size();
                }
                // Check if the element is registered.
                bool has_key(const T &e) const {
                    return std::binary_search(_xs.begin(), _xs.end(), e);
                }
                // Compress the element. if not registered, returns `default_value`. (default: Compressor::absent)
                int comp(const T &e, int default_value = absent) const {
                    const int res = min_geq_index(e);
                    return res != size() and _xs[res] == e ? res : default_value;
                }
                // Restore the element from the index.
                T decomp(const int compressed_index) const {
                    return _xs[compressed_index];
                }
                // Compress the element. Equivalent to call `comp(e)`
                int operator[](const T &e) const {
                    return comp(e);
                }
                // Return the minimum registered value greater than `e`. if not exists, return `default_value`.
                T min_gt(const T &e, const T &default_value) const {
                    auto it = std::upper_bound(_xs.begin(), _xs.end(), e);
                    return it == _xs.end() ? default_value : *it;
                }
                // Return the minimum registered value greater than or equal to `e`. if not exists, return `default_value`.
                T min_geq(const T &e, const T &default_value) const {
                    auto it = std::lower_bound(_xs.begin(), _xs.end(), e);
                    return it == _xs.end() ? default_value : *it;
                }
                // Return the maximum registered value less than `e`. if not exists, return `default_value`
                T max_lt(const T &e, const T &default_value) const {
                    auto it = std::upper_bound(_xs.rbegin(), _xs.rend(), e);
                    return it == _xs.rend() ? default_value : *it;
                }
                // Return the maximum registered value less than or equal to `e`. if not exists, return `default_value`
                T max_leq(const T &e, const T &default_value) const {
                    auto it = std::lower_bound(_xs.rbegin(), _xs.rend(), e);
                    return it == _xs.rend() ? default_value : *it;
                }
                // Return the compressed index of the minimum registered value greater than `e`. if not exists, return `compressor.size()`.
                int min_gt_index(const T &e) const {
                    return std::upper_bound(_xs.begin(), _xs.end(), e) - _xs.begin();
                }
                // Return the compressed index of the minimum registered value greater than or equal to `e`. if not exists, return `compressor.size()`.
                int min_geq_index(const T &e) const {
                    return std::lower_bound(_xs.begin(), _xs.end(), e) - _xs.begin();
                }
                // Return the compressed index of the maximum registered value less than `e`. if not exists, return -1.
                int max_lt_index(const T &e) const {
                    return int(_xs.rend() - std::upper_bound(_xs.rbegin(), _xs.rend(), e)) - 1;
                }
                // Return the compressed index of the maximum registered value less than or equal to `e`. if not exists, return -1.
                int max_leq_index(const T &e) const {
                    return int(_xs.rend() - std::lower_bound(_xs.rbegin(), _xs.rend(), e)) - 1;
                }
            private:
                std::vector<T> _xs;
                static bool is_strictly_sorted(const std::vector<T> &v) {
                    return std::adjacent_find(v.begin(), v.end(), std::greater_equal<T>()) == v.end();
                }
        };
        CoordinateCompressorBuilder() : _xs(std::vector<T>{}) {}
        explicit CoordinateCompressorBuilder(const std::vector<T> &xs) : _xs(xs) {}
        explicit CoordinateCompressorBuilder(std::vector<T> &&xs) : _xs(std::move(xs)) {}
        template <typename Gen, constraints_t<is_same_as_invoke_result<T, Gen, int>> = nullptr>
        CoordinateCompressorBuilder(const int n, Gen generator) {
            reserve(n);
            for (int i = 0; i < n; ++i) push(generator(i));
        }
        // Attempt to preallocate enough memory for specified number of elements.
        void reserve(int n) {
            _xs.reserve(n);
        }
        // Add data.
        void push(const T &first) {
            _xs.push_back(first);
        }
        // Add data.
        void push(T &&first) {
            _xs.push_back(std::move(first));
        }
        // Add data in the range of [first, last). 
        template <typename Iterator>
        auto push(const Iterator &first, const Iterator &last) -> decltype(std::vector<T>{}.push_back(*first), void()) {
            for (auto it = first; it != last; ++it) _xs.push_back(*it);
        }
        // Add all data in the container. Equivalent to `push(iterable.begin(), iterable.end())`.
        template <typename Iterable>
        auto push(const Iterable &iterable) -> decltype(std::vector<T>{}.push_back(*iterable.begin()), void()) {
            push(iterable.begin(), iterable.end());
        }
        // Add data.
        template <typename ...Args>
        void emplace(Args &&...args) {
            _xs.emplace_back(std::forward<Args>(args)...);
        }
        // Build compressor.
        auto build() {
            std::sort(_xs.begin(), _xs.end()), _xs.erase(std::unique(_xs.begin(), _xs.end()), _xs.end());
            return Compressor {_xs};
        }
        // Build compressor from vector.
        static auto build(const std::vector<T> &xs) {
            return CoordinateCompressorBuilder(xs).build();
        }
        // Build compressor from vector.
        static auto build(std::vector<T> &&xs) {
            return CoordinateCompressorBuilder(std::move(xs)).build();
        }
        // Build compressor from generator.
        template <typename Gen, constraints_t<is_same_as_invoke_result<T, Gen, int>> = nullptr>
        static auto build(const int n, Gen generator) {
            return CoordinateCompressorBuilder<T>(n, generator).build();
        }
    private:
        std::vector<T> _xs;
};

} // namespace suisen

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

// @param n `0 <= n`
// @return minimum non-negative `x` s.t. `n <= 2**x`
int ceil_pow2(int n) {
    int x = 0;
    while ((1U << x) < (unsigned int)(n)) x++;
    return x;
}

// @param n `1 <= n`
// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
constexpr int bsf_constexpr(unsigned int n) {
    int x = 0;
    while (!(n & (1 << x))) x++;
    return x;
}

// @param n `1 <= n`
// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
int bsf(unsigned int n) {
#ifdef _MSC_VER
    unsigned long index;
    _BitScanForward(&index, n);
    return index;
#else
    return __builtin_ctz(n);
#endif
}

}  // namespace internal

}  // namespace atcoder

namespace atcoder {

template <class S, S (*op)(S, S), S (*e)()> struct segtree {
  public:
    segtree() : segtree(0) {}
    explicit segtree(int n) : segtree(std::vector<S>(n, e())) {}
    explicit segtree(const std::vector<S>& v) : _n(int(v.size())) {
        log = internal::ceil_pow2(_n);
        size = 1 << log;
        d = std::vector<S>(2 * size, e());
        for (int i = 0; i < _n; i++) d[size + i] = v[i];
        for (int i = size - 1; i >= 1; i--) {
            update(i);
        }
    }

    void set(int p, S x) {
        assert(0 <= p && p < _n);
        p += size;
        d[p] = x;
        for (int i = 1; i <= log; i++) update(p >> i);
    }

    S get(int p) const {
        assert(0 <= p && p < _n);
        return d[p + size];
    }

    S prod(int l, int r) const {
        assert(0 <= l && l <= r && r <= _n);
        S sml = e(), smr = e();
        l += size;
        r += size;

        while (l < r) {
            if (l & 1) sml = op(sml, d[l++]);
            if (r & 1) smr = op(d[--r], smr);
            l >>= 1;
            r >>= 1;
        }
        return op(sml, smr);
    }

    S all_prod() const { return d[1]; }

    template <bool (*f)(S)> int max_right(int l) const {
        return max_right(l, [](S x) { return f(x); });
    }
    template <class F> int max_right(int l, F f) const {
        assert(0 <= l && l <= _n);
        assert(f(e()));
        if (l == _n) return _n;
        l += size;
        S sm = e();
        do {
            while (l % 2 == 0) l >>= 1;
            if (!f(op(sm, d[l]))) {
                while (l < size) {
                    l = (2 * l);
                    if (f(op(sm, d[l]))) {
                        sm = op(sm, d[l]);
                        l++;
                    }
                }
                return l - size;
            }
            sm = op(sm, d[l]);
            l++;
        } while ((l & -l) != l);
        return _n;
    }

    template <bool (*f)(S)> int min_left(int r) const {
        return min_left(r, [](S x) { return f(x); });
    }
    template <class F> int min_left(int r, F f) const {
        assert(0 <= r && r <= _n);
        assert(f(e()));
        if (r == 0) return 0;
        r += size;
        S sm = e();
        do {
            r--;
            while (r > 1 && (r % 2)) r >>= 1;
            if (!f(op(d[r], sm))) {
                while (r < size) {
                    r = (2 * r + 1);
                    if (f(op(d[r], sm))) {
                        sm = op(d[r], sm);
                        r--;
                    }
                }
                return r + 1 - size;
            }
            sm = op(d[r], sm);
        } while ((r & -r) != r);
        return 0;
    }

  private:
    int _n, size, log;
    std::vector<S> d;

    void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
};

}  // namespace atcoder

constexpr long long inf = numeric_limits<long long>::max() / 2;

long long op(long long x, long long y) {
    return max(x, y);
}
long long e() {
    return -inf;
}

int main() {
    input(int, n);
    vector<tuple<long long, long long, long long>> items(n);
    CoordinateCompressorBuilder<long long> builder;
    read(items);
    for (auto &[t, x, v] : items) {
        long long a = x + t;
        long long b = x - t;
        t = a, x = b;
        builder.push(b);
    }
    builder.push(0);
    auto comp = builder.build();
    sort(all(items), [&](auto &p1, auto &p2) {
        auto &[u1, v1, w1] = p1;
        auto &[u2, v2, w2] = p2;
        if (u1 != u2) {
            return u1 < u2;
        } else {
            return v1 > v2;
        }
    });

    // print("sorted");
    // print_all(items, "\n");

    const int m = comp.size();
    atcoder::segtree<long long, op, e> seg(m);

    bool init = false;
    for (auto &[u, v, w] : items) {
        if (not init and (u > 0 or (u == 0 and v >= 0))) {
            init = true;
            seg.set(comp[0], 0);
        }

        int cv = comp[v];
        seg.set(cv, max(seg.get(cv), seg.prod(cv, m) + w));
        // assert(comp.decomp(cv) == v);
        // print(u, v, seg.get(cv));
    }

    print(seg.all_prod());
    return 0;
}

0