結果
問題 | No.1826 Fruits Collecting |
ユーザー | suisen |
提出日時 | 2022-01-28 22:17:28 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 23,272 bytes |
コンパイル時間 | 3,062 ms |
コンパイル使用メモリ | 219,848 KB |
実行使用メモリ | 16,816 KB |
最終ジャッジ日時 | 2024-12-30 07:44:25 |
合計ジャッジ時間 | 9,557 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 3 ms
5,248 KB |
testcase_01 | AC | 3 ms
5,248 KB |
testcase_02 | AC | 3 ms
5,248 KB |
testcase_03 | AC | 4 ms
5,248 KB |
testcase_04 | AC | 3 ms
5,248 KB |
testcase_05 | AC | 77 ms
9,040 KB |
testcase_06 | AC | 129 ms
13,576 KB |
testcase_07 | AC | 94 ms
9,744 KB |
testcase_08 | AC | 11 ms
5,248 KB |
testcase_09 | AC | 127 ms
11,348 KB |
testcase_10 | AC | 83 ms
9,492 KB |
testcase_11 | AC | 84 ms
9,168 KB |
testcase_12 | AC | 33 ms
5,920 KB |
testcase_13 | AC | 17 ms
5,248 KB |
testcase_14 | AC | 27 ms
5,248 KB |
testcase_15 | AC | 205 ms
16,668 KB |
testcase_16 | AC | 206 ms
16,696 KB |
testcase_17 | AC | 204 ms
16,692 KB |
testcase_18 | AC | 204 ms
16,560 KB |
testcase_19 | AC | 201 ms
16,696 KB |
testcase_20 | AC | 203 ms
16,696 KB |
testcase_21 | AC | 208 ms
16,816 KB |
testcase_22 | AC | 200 ms
16,708 KB |
testcase_23 | AC | 202 ms
16,692 KB |
testcase_24 | AC | 200 ms
16,692 KB |
testcase_25 | WA | - |
testcase_26 | WA | - |
testcase_27 | AC | 2 ms
5,248 KB |
testcase_28 | AC | 2 ms
5,248 KB |
testcase_29 | AC | 2 ms
5,248 KB |
testcase_30 | AC | 42 ms
6,408 KB |
testcase_31 | AC | 82 ms
9,460 KB |
testcase_32 | AC | 40 ms
6,216 KB |
testcase_33 | AC | 139 ms
13,796 KB |
testcase_34 | AC | 115 ms
10,748 KB |
testcase_35 | AC | 28 ms
5,248 KB |
testcase_36 | AC | 133 ms
13,604 KB |
testcase_37 | AC | 79 ms
10,332 KB |
testcase_38 | AC | 57 ms
8,908 KB |
testcase_39 | WA | - |
testcase_40 | AC | 100 ms
11,764 KB |
testcase_41 | AC | 25 ms
5,248 KB |
testcase_42 | AC | 6 ms
5,248 KB |
testcase_43 | AC | 2 ms
5,248 KB |
testcase_44 | AC | 2 ms
5,248 KB |
testcase_45 | AC | 2 ms
5,248 KB |
ソースコード
// #pragma comment(linker, "/stack:200000000") #include <bits/stdc++.h> #include <limits> #include <type_traits> namespace suisen { // ! utility template <typename ...Types> using constraints_t = std::enable_if_t<std::conjunction_v<Types...>, std::nullptr_t>; template <bool cond_v, typename Then, typename OrElse> constexpr decltype(auto) constexpr_if(Then&& then, OrElse&& or_else) { if constexpr (cond_v) { return std::forward<Then>(then); } else { return std::forward<OrElse>(or_else); } } // ! function template <typename ReturnType, typename Callable, typename ...Args> using is_same_as_invoke_result = std::is_same<std::invoke_result_t<Callable, Args...>, ReturnType>; template <typename F, typename T> using is_uni_op = is_same_as_invoke_result<T, F, T>; template <typename F, typename T> using is_bin_op = is_same_as_invoke_result<T, F, T, T>; template <typename Comparator, typename T> using is_comparator = std::is_same<std::invoke_result_t<Comparator, T, T>, bool>; // ! integral template <typename T, typename = constraints_t<std::is_integral<T>>> constexpr int bit_num = std::numeric_limits<std::make_unsigned_t<T>>::digits; template <typename T, unsigned int n> struct is_nbit { static constexpr bool value = bit_num<T> == n; }; template <typename T, unsigned int n> static constexpr bool is_nbit_v = is_nbit<T, n>::value; // ? template <typename T> struct safely_multipliable {}; template <> struct safely_multipliable<int> { using type = long long; }; template <> struct safely_multipliable<long long> { using type = __int128_t; }; template <> struct safely_multipliable<float> { using type = float; }; template <> struct safely_multipliable<double> { using type = double; }; template <> struct safely_multipliable<long double> { using type = long double; }; template <typename T> using safely_multipliable_t = typename safely_multipliable<T>::type; } // namespace suisen // ! type aliases using i128 = __int128_t; using u128 = __uint128_t; using ll = long long; using uint = unsigned int; using ull = unsigned long long; template <typename T> using vec = std::vector<T>; template <typename T> using vec2 = vec<vec <T>>; template <typename T> using vec3 = vec<vec2<T>>; template <typename T> using vec4 = vec<vec3<T>>; template <typename T> using pq_greater = std::priority_queue<T, std::vector<T>, std::greater<T>>; template <typename T, typename U> using umap = std::unordered_map<T, U>; // ! macros (capital: internal macro) #define OVERLOAD2(_1,_2,name,...) name #define OVERLOAD3(_1,_2,_3,name,...) name #define OVERLOAD4(_1,_2,_3,_4,name,...) name #define REP4(i,l,r,s) for(std::remove_reference_t<std::remove_const_t<decltype(r)>>i=(l);i<(r);i+=(s)) #define REP3(i,l,r) REP4(i,l,r,1) #define REP2(i,n) REP3(i,0,n) #define REPINF3(i,l,s) for(std::remove_reference_t<std::remove_const_t<decltype(l)>>i=(l);;i+=(s)) #define REPINF2(i,l) REPINF3(i,l,1) #define REPINF1(i) REPINF2(i,0) #define RREP4(i,l,r,s) for(std::remove_reference_t<std::remove_const_t<decltype(r)>>i=(l)+fld((r)-(l)-1,s)*(s);i>=(l);i-=(s)) #define RREP3(i,l,r) RREP4(i,l,r,1) #define RREP2(i,n) RREP3(i,0,n) #define rep(...) OVERLOAD4(__VA_ARGS__, REP4 , REP3 , REP2 )(__VA_ARGS__) #define rrep(...) OVERLOAD4(__VA_ARGS__, RREP4 , RREP3 , RREP2 )(__VA_ARGS__) #define repinf(...) OVERLOAD3(__VA_ARGS__, REPINF3, REPINF2, REPINF1)(__VA_ARGS__) #define CAT_I(a, b) a##b #define CAT(a, b) CAT_I(a, b) #define UNIQVAR(tag) CAT(tag, __LINE__) #define loop(n) for (std::remove_reference_t<std::remove_const_t<decltype(n)>> UNIQVAR(loop_variable) = n; UNIQVAR(loop_variable) --> 0;) #define all(iterable) (iterable).begin(), (iterable).end() #define input(type, ...) type __VA_ARGS__; read(__VA_ARGS__) // ! I/O utilities // pair template <typename T, typename U> std::ostream& operator<<(std::ostream& out, const std::pair<T, U> &a) { return out << a.first << ' ' << a.second; } // tuple template <unsigned int N = 0, typename ...Args> std::ostream& operator<<(std::ostream& out, const std::tuple<Args...> &a) { if constexpr (N >= std::tuple_size_v<std::tuple<Args...>>) { return out; } else { out << std::get<N>(a); if constexpr (N + 1 < std::tuple_size_v<std::tuple<Args...>>) { out << ' '; } return operator<<<N + 1>(out, a); } } // vector template <typename T> std::ostream& operator<<(std::ostream& out, const std::vector<T> &a) { for (auto it = a.begin(); it != a.end();) { out << *it; if (++it != a.end()) out << ' '; } return out; } // array template <typename T, size_t N> std::ostream& operator<<(std::ostream& out, const std::array<T, N> &a) { for (auto it = a.begin(); it != a.end();) { out << *it; if (++it != a.end()) out << ' '; } return out; } inline void print() { std::cout << '\n'; } template <typename Head, typename... Tail> inline void print(const Head &head, const Tail &...tails) { std::cout << head; if (sizeof...(tails)) std::cout << ' '; print(tails...); } template <typename Iterable> auto print_all(const Iterable& v, std::string sep = " ", std::string end = "\n") -> decltype(std::cout << *v.begin(), void()) { for (auto it = v.begin(); it != v.end();) { std::cout << *it; if (++it != v.end()) std::cout << sep; } std::cout << end; } // pair template <typename T, typename U> std::istream& operator>>(std::istream& in, std::pair<T, U> &a) { return in >> a.first >> a.second; } // tuple template <unsigned int N = 0, typename ...Args> std::istream& operator>>(std::istream& in, std::tuple<Args...> &a) { if constexpr (N >= std::tuple_size_v<std::tuple<Args...>>) { return in; } else { return operator>><N + 1>(in >> std::get<N>(a), a); } } // vector template <typename T> std::istream& operator>>(std::istream& in, std::vector<T> &a) { for (auto it = a.begin(); it != a.end(); ++it) in >> *it; return in; } // array template <typename T, size_t N> std::istream& operator>>(std::istream& in, std::array<T, N> &a) { for (auto it = a.begin(); it != a.end(); ++it) in >> *it; return in; } template <typename ...Args> void read(Args &...args) { ( std::cin >> ... >> args ); } // ! integral utilities // Returns pow(-1, n) template <typename T> constexpr inline int pow_m1(T n) { return -(n & 1) | 1; } // Returns pow(-1, n) template <> constexpr inline int pow_m1<bool>(bool n) { return -int(n) | 1; } // Returns floor(x / y) template <typename T> constexpr inline T fld(const T x, const T y) { return (x ^ y) >= 0 ? x / y : (x - (y + pow_m1(y >= 0))) / y; } template <typename T> constexpr inline T cld(const T x, const T y) { return (x ^ y) <= 0 ? x / y : (x + (y + pow_m1(y >= 0))) / y; } template <typename T, suisen::constraints_t<suisen::is_nbit<T, 16>> = nullptr> constexpr inline int popcount(const T x) { return __builtin_popcount(x); } template <typename T, suisen::constraints_t<suisen::is_nbit<T, 32>> = nullptr> constexpr inline int popcount(const T x) { return __builtin_popcount(x); } template <typename T, suisen::constraints_t<suisen::is_nbit<T, 64>> = nullptr> constexpr inline int popcount(const T x) { return __builtin_popcountll(x); } template <typename T, suisen::constraints_t<suisen::is_nbit<T, 16>> = nullptr> constexpr inline int count_lz(const T x) { return x ? __builtin_clz(x) : suisen::bit_num<T>; } template <typename T, suisen::constraints_t<suisen::is_nbit<T, 32>> = nullptr> constexpr inline int count_lz(const T x) { return x ? __builtin_clz(x) : suisen::bit_num<T>; } template <typename T, suisen::constraints_t<suisen::is_nbit<T, 64>> = nullptr> constexpr inline int count_lz(const T x) { return x ? __builtin_clzll(x) : suisen::bit_num<T>; } template <typename T, suisen::constraints_t<suisen::is_nbit<T, 16>> = nullptr> constexpr inline int count_tz(const T x) { return x ? __builtin_ctz(x) : suisen::bit_num<T>; } template <typename T, suisen::constraints_t<suisen::is_nbit<T, 32>> = nullptr> constexpr inline int count_tz(const T x) { return x ? __builtin_ctz(x) : suisen::bit_num<T>; } template <typename T, suisen::constraints_t<suisen::is_nbit<T, 64>> = nullptr> constexpr inline int count_tz(const T x) { return x ? __builtin_ctzll(x) : suisen::bit_num<T>; } template <typename T> constexpr inline int floor_log2(const T x) { return suisen::bit_num<T> - 1 - count_lz(x); } template <typename T> constexpr inline int ceil_log2(const T x) { return floor_log2(x) + ((x & -x) != x); } template <typename T> constexpr inline int kth_bit(const T x, const unsigned int k) { return (x >> k) & 1; } template <typename T> constexpr inline int parity(const T x) { return popcount(x) & 1; } struct all_subset { struct all_subset_iter { const int s; int t; constexpr all_subset_iter(int s) : s(s), t(s + 1) {} constexpr auto operator*() const { return t; } constexpr auto operator++() {} constexpr auto operator!=(std::nullptr_t) { return t ? (--t &= s, true) : false; } }; int s; constexpr all_subset(int s) : s(s) {} constexpr auto begin() { return all_subset_iter(s); } constexpr auto end() { return nullptr; } }; // ! container template <typename T, typename Comparator, suisen::constraints_t<suisen::is_comparator<Comparator, T>> = nullptr> auto priqueue_comp(const Comparator comparator) { return std::priority_queue<T, std::vector<T>, Comparator>(comparator); } template <typename Iterable> auto isize(const Iterable &iterable) -> decltype(int(iterable.size())) { return iterable.size(); } template <typename T, typename Gen, suisen::constraints_t<suisen::is_same_as_invoke_result<T, Gen, int>> = nullptr> auto generate_vector(int n, Gen generator) { std::vector<T> v(n); for (int i = 0; i < n; ++i) v[i] = generator(i); return v; } template <typename T> auto generate_range_vector(T l, T r) { return generate_vector(r - l, [l](int i) { return l + i; }); } template <typename T> auto generate_range_vector(T n) { return generate_range_vector(0, n); } template <typename T> void sort_unique_erase(std::vector<T> &a) { std::sort(a.begin(), a.end()); a.erase(std::unique(a.begin(), a.end()), a.end()); } template <typename InputIterator, typename BiConsumer> auto foreach_adjacent_values(InputIterator first, InputIterator last, BiConsumer f) -> decltype(f(*first++, *last), void()) { if (first != last) for (auto itr = first, itl = itr++; itr != last; itl = itr++) f(*itl, *itr); } template <typename Container, typename BiConsumer> auto foreach_adjacent_values(Container c, BiConsumer f) -> decltype(c.begin(), c.end(), void()){ foreach_adjacent_values(c.begin(), c.end(), f); } // ! other utilities // x <- min(x, y). returns true iff `x` has chenged. template <typename T> inline bool chmin(T &x, const T &y) { if (y >= x) return false; x = y; return true; } // x <- max(x, y). returns true iff `x` has chenged. template <typename T> inline bool chmax(T &x, const T &y) { if (y <= x) return false; x = y; return true; } namespace suisen {} using namespace suisen; using namespace std; struct io_setup { io_setup(int precision = 20) { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); std::cout << std::fixed << std::setprecision(precision); } } io_setup_ {}; // ! code from here #include <algorithm> #include <cassert> #include <vector> namespace suisen { template <typename T> class CoordinateCompressorBuilder { public: struct Compressor { public: static constexpr int absent = -1; // default constructor Compressor() : _xs(std::vector<T>{}) {} // Construct from strictly sorted vector Compressor(const std::vector<T> &xs) : _xs(xs) { assert(is_strictly_sorted(xs)); } // Return the number of distinct keys. int size() const { return _xs.size(); } // Check if the element is registered. bool has_key(const T &e) const { return std::binary_search(_xs.begin(), _xs.end(), e); } // Compress the element. if not registered, returns `default_value`. (default: Compressor::absent) int comp(const T &e, int default_value = absent) const { const int res = min_geq_index(e); return res != size() and _xs[res] == e ? res : default_value; } // Restore the element from the index. T decomp(const int compressed_index) const { return _xs[compressed_index]; } // Compress the element. Equivalent to call `comp(e)` int operator[](const T &e) const { return comp(e); } // Return the minimum registered value greater than `e`. if not exists, return `default_value`. T min_gt(const T &e, const T &default_value) const { auto it = std::upper_bound(_xs.begin(), _xs.end(), e); return it == _xs.end() ? default_value : *it; } // Return the minimum registered value greater than or equal to `e`. if not exists, return `default_value`. T min_geq(const T &e, const T &default_value) const { auto it = std::lower_bound(_xs.begin(), _xs.end(), e); return it == _xs.end() ? default_value : *it; } // Return the maximum registered value less than `e`. if not exists, return `default_value` T max_lt(const T &e, const T &default_value) const { auto it = std::upper_bound(_xs.rbegin(), _xs.rend(), e); return it == _xs.rend() ? default_value : *it; } // Return the maximum registered value less than or equal to `e`. if not exists, return `default_value` T max_leq(const T &e, const T &default_value) const { auto it = std::lower_bound(_xs.rbegin(), _xs.rend(), e); return it == _xs.rend() ? default_value : *it; } // Return the compressed index of the minimum registered value greater than `e`. if not exists, return `compressor.size()`. int min_gt_index(const T &e) const { return std::upper_bound(_xs.begin(), _xs.end(), e) - _xs.begin(); } // Return the compressed index of the minimum registered value greater than or equal to `e`. if not exists, return `compressor.size()`. int min_geq_index(const T &e) const { return std::lower_bound(_xs.begin(), _xs.end(), e) - _xs.begin(); } // Return the compressed index of the maximum registered value less than `e`. if not exists, return -1. int max_lt_index(const T &e) const { return int(_xs.rend() - std::upper_bound(_xs.rbegin(), _xs.rend(), e)) - 1; } // Return the compressed index of the maximum registered value less than or equal to `e`. if not exists, return -1. int max_leq_index(const T &e) const { return int(_xs.rend() - std::lower_bound(_xs.rbegin(), _xs.rend(), e)) - 1; } private: std::vector<T> _xs; static bool is_strictly_sorted(const std::vector<T> &v) { return std::adjacent_find(v.begin(), v.end(), std::greater_equal<T>()) == v.end(); } }; CoordinateCompressorBuilder() : _xs(std::vector<T>{}) {} explicit CoordinateCompressorBuilder(const std::vector<T> &xs) : _xs(xs) {} explicit CoordinateCompressorBuilder(std::vector<T> &&xs) : _xs(std::move(xs)) {} template <typename Gen, constraints_t<is_same_as_invoke_result<T, Gen, int>> = nullptr> CoordinateCompressorBuilder(const int n, Gen generator) { reserve(n); for (int i = 0; i < n; ++i) push(generator(i)); } // Attempt to preallocate enough memory for specified number of elements. void reserve(int n) { _xs.reserve(n); } // Add data. void push(const T &first) { _xs.push_back(first); } // Add data. void push(T &&first) { _xs.push_back(std::move(first)); } // Add data in the range of [first, last). template <typename Iterator> auto push(const Iterator &first, const Iterator &last) -> decltype(std::vector<T>{}.push_back(*first), void()) { for (auto it = first; it != last; ++it) _xs.push_back(*it); } // Add all data in the container. Equivalent to `push(iterable.begin(), iterable.end())`. template <typename Iterable> auto push(const Iterable &iterable) -> decltype(std::vector<T>{}.push_back(*iterable.begin()), void()) { push(iterable.begin(), iterable.end()); } // Add data. template <typename ...Args> void emplace(Args &&...args) { _xs.emplace_back(std::forward<Args>(args)...); } // Build compressor. auto build() { std::sort(_xs.begin(), _xs.end()), _xs.erase(std::unique(_xs.begin(), _xs.end()), _xs.end()); return Compressor {_xs}; } // Build compressor from vector. static auto build(const std::vector<T> &xs) { return CoordinateCompressorBuilder(xs).build(); } // Build compressor from vector. static auto build(std::vector<T> &&xs) { return CoordinateCompressorBuilder(std::move(xs)).build(); } // Build compressor from generator. template <typename Gen, constraints_t<is_same_as_invoke_result<T, Gen, int>> = nullptr> static auto build(const int n, Gen generator) { return CoordinateCompressorBuilder<T>(n, generator).build(); } private: std::vector<T> _xs; }; } // namespace suisen #ifdef _MSC_VER #include <intrin.h> #endif namespace atcoder { namespace internal { // @param n `0 <= n` // @return minimum non-negative `x` s.t. `n <= 2**x` int ceil_pow2(int n) { int x = 0; while ((1U << x) < (unsigned int)(n)) x++; return x; } // @param n `1 <= n` // @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0` constexpr int bsf_constexpr(unsigned int n) { int x = 0; while (!(n & (1 << x))) x++; return x; } // @param n `1 <= n` // @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0` int bsf(unsigned int n) { #ifdef _MSC_VER unsigned long index; _BitScanForward(&index, n); return index; #else return __builtin_ctz(n); #endif } } // namespace internal } // namespace atcoder namespace atcoder { template <class S, S (*op)(S, S), S (*e)()> struct segtree { public: segtree() : segtree(0) {} explicit segtree(int n) : segtree(std::vector<S>(n, e())) {} explicit segtree(const std::vector<S>& v) : _n(int(v.size())) { log = internal::ceil_pow2(_n); size = 1 << log; d = std::vector<S>(2 * size, e()); for (int i = 0; i < _n; i++) d[size + i] = v[i]; for (int i = size - 1; i >= 1; i--) { update(i); } } void set(int p, S x) { assert(0 <= p && p < _n); p += size; d[p] = x; for (int i = 1; i <= log; i++) update(p >> i); } S get(int p) const { assert(0 <= p && p < _n); return d[p + size]; } S prod(int l, int r) const { assert(0 <= l && l <= r && r <= _n); S sml = e(), smr = e(); l += size; r += size; while (l < r) { if (l & 1) sml = op(sml, d[l++]); if (r & 1) smr = op(d[--r], smr); l >>= 1; r >>= 1; } return op(sml, smr); } S all_prod() const { return d[1]; } template <bool (*f)(S)> int max_right(int l) const { return max_right(l, [](S x) { return f(x); }); } template <class F> int max_right(int l, F f) const { assert(0 <= l && l <= _n); assert(f(e())); if (l == _n) return _n; l += size; S sm = e(); do { while (l % 2 == 0) l >>= 1; if (!f(op(sm, d[l]))) { while (l < size) { l = (2 * l); if (f(op(sm, d[l]))) { sm = op(sm, d[l]); l++; } } return l - size; } sm = op(sm, d[l]); l++; } while ((l & -l) != l); return _n; } template <bool (*f)(S)> int min_left(int r) const { return min_left(r, [](S x) { return f(x); }); } template <class F> int min_left(int r, F f) const { assert(0 <= r && r <= _n); assert(f(e())); if (r == 0) return 0; r += size; S sm = e(); do { r--; while (r > 1 && (r % 2)) r >>= 1; if (!f(op(d[r], sm))) { while (r < size) { r = (2 * r + 1); if (f(op(d[r], sm))) { sm = op(d[r], sm); r--; } } return r + 1 - size; } sm = op(d[r], sm); } while ((r & -r) != r); return 0; } private: int _n, size, log; std::vector<S> d; void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); } }; } // namespace atcoder constexpr long long inf = numeric_limits<long long>::max() / 2; long long op(long long x, long long y) { return max(x, y); } long long e() { return -inf; } int main() { input(int, n); vector<tuple<long long, long long, long long>> items(n); CoordinateCompressorBuilder<long long> builder; read(items); for (auto &[t, x, v] : items) { long long a = x + t; long long b = x - t; t = a, x = b; builder.push(b); } builder.push(0); auto comp = builder.build(); sort(all(items), [&](auto &p1, auto &p2) { auto &[u1, v1, w1] = p1; auto &[u2, v2, w2] = p2; if (u1 != u2) { return u1 < u2; } else { return v1 > v2; } }); // print("sorted"); // print_all(items, "\n"); const int m = comp.size(); atcoder::segtree<long long, op, e> seg(m); bool init = false; for (auto &[u, v, w] : items) { if (not init and (u > 0 or (u == 0 and v >= 0))) { init = true; seg.set(comp[0], 0); } int cv = comp[v]; seg.set(cv, max(seg.get(cv), seg.prod(cv, m) + w)); // assert(comp.decomp(cv) == v); // print(u, v, seg.get(cv)); } print(seg.all_prod()); return 0; }