結果
問題 | No.1112 冥界の音楽 |
ユーザー | tko919 |
提出日時 | 2022-02-02 01:26:06 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 18,615 bytes |
コンパイル時間 | 2,695 ms |
コンパイル使用メモリ | 228,280 KB |
実行使用メモリ | 88,088 KB |
最終ジャッジ日時 | 2024-06-11 09:17:31 |
合計ジャッジ時間 | 7,804 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
10,624 KB |
testcase_01 | AC | 1 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | WA | - |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 1 ms
5,376 KB |
testcase_08 | AC | 2 ms
5,376 KB |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 2 ms
5,376 KB |
testcase_12 | AC | 1 ms
5,376 KB |
testcase_13 | AC | 1 ms
5,376 KB |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | AC | 2 ms
5,376 KB |
testcase_17 | WA | - |
testcase_18 | WA | - |
testcase_19 | AC | 1 ms
5,376 KB |
testcase_20 | WA | - |
testcase_21 | WA | - |
testcase_22 | WA | - |
testcase_23 | WA | - |
testcase_24 | AC | 2 ms
5,376 KB |
testcase_25 | AC | 2 ms
5,376 KB |
testcase_26 | TLE | - |
testcase_27 | -- | - |
testcase_28 | -- | - |
testcase_29 | -- | - |
testcase_30 | -- | - |
testcase_31 | -- | - |
testcase_32 | -- | - |
testcase_33 | -- | - |
testcase_34 | -- | - |
testcase_35 | -- | - |
testcase_36 | -- | - |
ソースコード
#line 1 "library/Template/template.hpp"#include <bits/stdc++.h>using namespace std;#define rep(i,a,b) for(int i=(int)(a);i<(int)(b);i++)#define ALL(v) (v).begin(),(v).end()using ll=long long int;const int inf = 0x3fffffff;const ll INF = 0x1fffffffffffffff;template<typename T>inline bool chmax(T& a,T b){if(a<b){a=b;return 1;}return 0;}template<typename T>inline bool chmin(T& a,T b){if(a>b){a=b;return 1;}return 0;}#line 2 "library/Utility/fastio.hpp"#include <unistd.h>class FastIO{static constexpr int L=1<<16;char rdbuf[L];int rdLeft=0,rdRight=0;inline void reload(){int len=rdRight-rdLeft;memmove(rdbuf,rdbuf+rdLeft,len);rdLeft=0,rdRight=len;rdRight+=fread(rdbuf+len,1,L-len,stdin);}inline bool skip(){for(;;){while(rdLeft!=rdRight and rdbuf[rdLeft]<=' ')rdLeft++;if(rdLeft==rdRight){reload();if(rdLeft==rdRight)return false;}else break;}return true;}template<typename T,enable_if_t<is_integral<T>::value,int> =0>inline bool _read(T& x){if(!skip())return false;if(rdLeft+20>=rdRight)reload();bool neg=false;if(rdbuf[rdLeft]=='-'){neg=true;rdLeft++;}x=0;while(rdbuf[rdLeft]>='0' and rdLeft<rdRight){x=x*10+(neg?-(rdbuf[rdLeft++]^48):(rdbuf[rdLeft++]^48));}return true;}template<typename T,enable_if_t<is_floating_point<T>::value,int> =0>inline bool _read(T& x){if(!skip())return false;if(rdLeft+20>=rdRight)reload();bool neg=false;if(rdbuf[rdLeft]=='-'){neg=true;rdLeft++;}x=0;while(rdbuf[rdLeft]>='0' and rdbuf[rdLeft]<='9' and rdLeft<rdRight){x=x*10+(rdbuf[rdLeft++]^48);}if(rdbuf[rdLeft]!='.')return true;rdLeft++;T base=.1;while(rdbuf[rdLeft]>='0' and rdbuf[rdLeft]<='9' and rdLeft<rdRight){x+=base*(rdbuf[rdLeft++]^48);base*=.1;}if(neg)x=-x;return true;}inline bool _read(char& x){if(!skip())return false;if(rdLeft+1>=rdRight)reload();x=rdbuf[rdLeft++];return true;}inline bool _read(string& x){if(!skip())return false;for(;;){int pos=rdLeft;while(pos<rdRight and rdbuf[pos]>' ')pos++;x.append(rdbuf+rdLeft,pos-rdLeft);if(rdLeft==pos)break;rdLeft=pos;if(rdLeft==rdRight)reload();else break;}return true;}template<typename T>inline bool _read(vector<T>& v){for(auto& x:v){if(!_read(x))return false;}return true;}char wtbuf[L],tmp[50];int wtRight=0;inline void flush(){fwrite(wtbuf,1,wtRight,stdout);wtRight=0;}inline void _write(const char& x){if(wtRight>L-32)flush();wtbuf[wtRight++]=x;}inline void _write(const string& x){for(auto& c:x)_write(c);}template<typename T,enable_if_t<is_integral<T>::value,int> =0>inline void _write(T x){if(wtRight>L-32)flush();if(x==0){_write('0');return;}else if(x<0){_write('-');if (__builtin_expect(x == std::numeric_limits<T>::min(), 0)) {switch (sizeof(x)) {case 2: _write("32768"); return;case 4: _write("2147483648"); return;case 8: _write("9223372036854775808"); return;}}x=-x;}int pos=0;while(x!=0){tmp[pos++]=char((x%10)|48);x/=10;}rep(i,0,pos)wtbuf[wtRight+i]=tmp[pos-1-i];wtRight+=pos;}template<typename T>inline void _write(const vector<T>& v){rep(i,0,v.size()){if(i)_write(' ');_write(v[i]);}}public:FastIO(){}~FastIO(){flush();}inline void read(){}template <typename Head, typename... Tail>inline void read(Head& head,Tail&... tail){assert(_read(head));read(tail...);}template<bool ln=true,bool space=false>inline void write(){if(ln)_write('\n');}template <bool ln=true,bool space=false,typename Head, typename... Tail>inline void write(const Head& head,const Tail&... tail){if(space)_write(' ');_write(head);write<ln,true>(tail...);}};/*** @brief Fast IO*/#line 3 "sol.cpp"#line 2 "library/Math/modint.hpp"template<int mod=1000000007>struct fp {int v; static int get_mod(){return mod;}int inv() const{int tmp,a=v,b=mod,x=1,y=0;while(b)tmp=a/b,a-=tmp*b,swap(a,b),x-=tmp*y,swap(x,y);if(x<0){x+=mod;} return x;}fp(ll x=0){init(x%mod+mod);}fp& init(int x){v=(x<mod?x:x-mod); return *this;}fp operator-()const{return fp()-*this;}fp pow(ll t){fp res=1,b=*this; while(t){if(t&1)res*=b;b*=b;t>>=1;} return res;}fp& operator+=(const fp& x){return init(v+x.v);}fp& operator-=(const fp& x){return init(v+mod-x.v);}fp& operator*=(const fp& x){v=ll(v)*x.v%mod; return *this;}fp& operator/=(const fp& x){v=ll(v)*x.inv()%mod; return *this;}fp operator+(const fp& x)const{return fp(*this)+=x;}fp operator-(const fp& x)const{return fp(*this)-=x;}fp operator*(const fp& x)const{return fp(*this)*=x;}fp operator/(const fp& x)const{return fp(*this)/=x;}bool operator==(const fp& x)const{return v==x.v;}bool operator!=(const fp& x)const{return v!=x.v;}friend istream& operator>>(istream& is,fp& x){return is>>x.v;}friend ostream& operator<<(ostream& os,const fp& x){return os<<x.v;}};template<typename T>struct factorial {vector<T> Fact,Finv,Inv;factorial(int maxx){Fact.resize(maxx); Finv.resize(maxx); Inv.resize(maxx);Fact[0]=Fact[1]=Finv[0]=Finv[1]=Inv[1]=1;rep(i,2,maxx){Fact[i]=Fact[i-1]*i;} Finv[maxx-1]=Fact[maxx-1].inv();for(int i=maxx-1;i>=2;i--){Finv[i-1]=Finv[i]*i; Inv[i]=Finv[i]*Fact[i-1];}}T fact(int n,bool inv=0){if(n<0)return 0; return (inv?Finv[n]:Fact[n]);}T inv(int n){if(n<0)return 0; return Inv[n];}T nPr(int n,int r,bool inv=0){if(n<0||n<r||r<0)return 0; return fact(n,inv)*fact(n-r,inv^1);}T nCr(int n,int r,bool inv=0){if(n<0||n<r||r<0)return 0; return fact(n,inv)*fact(r,inv^1)*fact(n-r,inv^1);}T nHr(int n,int r,bool inv=0){return nCr(n+r-1,r,inv);}};/*** @brief Modint*/#line 2 "library/Convolution/ntt.hpp"template<typename T,unsigned p=3>struct NTT{vector<T> rt,irt;NTT(int lg=21){unsigned m=T::get_mod()-1; T prt=p;rt.resize(lg); irt.resize(lg);rep(k,0,lg){rt[k]=-prt.pow(m>>(k+2));irt[k]=rt[k].inv();}}void ntt(vector<T>& f,bool inv=0){int n=f.size();if(inv){for(int m=1;m<n;m<<=1){ T w=1;for(int s=0,t=0;s<n;s+=m*2){for(int i=s,j=s+m;i<s+m;i++,j++){auto x=f[i],y=f[j];f[i]=x+y; f[j]=(x-y)*w;} w*=irt[__builtin_ctz(++t)];}} T mul=T(n).inv(); rep(i,0,n)f[i]*=mul;}else{for(int m=n;m>>=1;){ T w=1;for(int s=0,t=0;s<n;s+=m*2){for(int i=s,j=s+m;i<s+m;i++,j++){auto x=f[i],y=f[j]*w;f[i]=x+y; f[j]=x-y;} w*=rt[__builtin_ctz(++t)];}}}}vector<T> mult(const vector<T>& a,const vector<T>& b,bool same=0){if(a.empty() or b.empty())return vector<T>();int n=a.size()+b.size()-1,m=1<<__lg(n*2-1);vector<T> res(m); rep(i,0,a.size()){res[i]=a[i];} ntt(res);if(same)rep(i,0,m)res[i]*=res[i];else{vector<T> c(m); rep(i,0,b.size())c[i]=b[i];ntt(c); rep(i,0,m)res[i]*=c[i];} ntt(res,1); res.resize(n); return res;}};/*** @brief Number Theoretic Transform*/#line 2 "library/FPS/fps.hpp"template<typename T>struct Poly:vector<T>{Poly(int n=0){this->assign(n,T());}Poly(const vector<T>& f){this->assign(ALL(f));}T eval(const T& x){T res;for(int i=this->size()-1;i>=0;i--)res*=x,res+=this->at(i);return res;}Poly rev()const{Poly res=*this; reverse(ALL(res)); return res;}void shrink(){while(!this->empty() and this->back()==0)this->pop_back();}vector<T> mult(const vector<T>& a,const vector<T>& b,bool same=0)const{if(a.empty() or b.empty())return vector<T>();int n=a.size()+b.size()-1,m=1<<__lg(n*2-1);vector<T> res(m);rep(i,0,a.size())res[i]=a[i];NTT(res,0);if(same)rep(i,0,m)res[i]*=res[i];else{vector<T> c(m);rep(i,0,b.size())c[i]=b[i];NTT(c,0);rep(i,0,m)res[i]*=c[i];}NTT(res,1);res.resize(n);return res;}Poly square()const{return Poly(mult(*this,*this,1));}Poly operator+(const Poly& g)const{return Poly(*this)+=g;}Poly operator+(const T& g)const{return Poly(*this)+=g;}Poly operator-(const Poly& g)const{return Poly(*this)-=g;}Poly operator-(const T& g)const{return Poly(*this)-=g;}Poly operator*(const Poly& g)const{return Poly(*this)*=g;}Poly operator*(const T& g)const{return Poly(*this)*=g;}Poly operator/(const Poly& g)const{return Poly(*this)/=g;}Poly operator%(const Poly& g)const{return Poly(*this)%=g;}Poly& operator+=(const Poly& g){if(g.size()>this->size())this->resize(g.size());rep(i,0,g.size()){(*this)[i]+=g[i];} return *this;}Poly& operator+=(const T& g){if(this->empty())this->push_back(0);(*this)[0]+=g; return *this;}Poly& operator-=(const Poly& g){if(g.size()>this->size())this->resize(g.size());rep(i,0,g.size()){(*this)[i]-=g[i];} return *this;}Poly& operator-=(const T& g){if(this->empty())this->push_back(0);(*this)[0]-=g; return *this;}Poly& operator*=(const Poly& g){*this=mult(*this,g,0);return *this;}Poly& operator*=(const T& g){rep(i,0,this->size())(*this)[i]*=g;return *this;}Poly& operator/=(const Poly& g){if(g.size()>this->size()){this->clear(); return *this;}Poly g2=g;reverse(ALL(*this));reverse(ALL(g2));int n=this->size()-g2.size()+1;this->resize(n); g2.resize(n);*this*=g2.inv(); this->resize(n);reverse(ALL(*this));shrink();return *this;}Poly& operator%=(const Poly& g){*this-=*this/g*g; shrink(); return *this;}Poly diff()const{Poly res(this->size()-1);rep(i,0,res.size())res[i]=(*this)[i+1]*(i+1);return res;}Poly inte()const{Poly res(this->size()+1);for(int i=res.size()-1;i;i--)res[i]=(*this)[i-1]/i;return res;}Poly log()const{assert(this->front()==1); const int n=this->size();Poly res=diff()*inv(); res=res.inte();res.resize(n); return res;}Poly shift(const int& c)const{const int n=this->size();Poly res=*this,g(n); g[0]=1; rep(i,1,n)g[i]=g[i-1]*c/i;vector<T> fact(n,1);rep(i,0,n){if(i)fact[i]=fact[i-1]*i;res[i]*=fact[i];}res=res.rev();res*=g;res.resize(n);res=res.rev();rep(i,0,n)res[i]/=fact[i];return res;}Poly inv()const{const int n=this->size();Poly res(1); res.front()=T(1)/this->front();for(int k=1;k<n;k<<=1){Poly f(k*2),g(k*2);rep(i,0,min(n,k*2))f[i]=(*this)[i];rep(i,0,k)g[i]=res[i];NTT(f,0);NTT(g,0);rep(i,0,k*2)f[i]*=g[i];NTT(f,1);rep(i,0,k){f[i]=0; f[i+k]=-f[i+k];}NTT(f,0);rep(i,0,k*2)f[i]*=g[i];NTT(f,1);rep(i,0,k)f[i]=res[i];swap(res,f);} res.resize(n); return res;}Poly exp()const{const int n=this->size();if(n==1)return Poly({T(1)});Poly b(2),c(1),z1,z2(2);b[0]=c[0]=z2[0]=z2[1]=1; b[1]=(*this)[1];for(int k=2;k<n;k<<=1){Poly y=b;y.resize(k*2);NTT(y,0);z1=z2;Poly z(k);rep(i,0,k)z[i]=y[i]*z1[i];NTT(z,1);rep(i,0,k>>1)z[i]=0;NTT(z,0);rep(i,0,k)z[i]*=-z1[i];NTT(z,1);c.insert(c.end(),z.begin()+(k>>1),z.end());z2=c;z2.resize(k*2);NTT(z2,0);Poly x=*this;x.resize(k);x=x.diff();x.resize(k);NTT(x,0);rep(i,0,k)x[i]*=y[i];NTT(x,1);Poly bb=b.diff();rep(i,0,k-1)x[i]-=bb[i];x.resize(k*2);rep(i,0,k-1){x[k+i]=x[i]; x[i]=0;}NTT(x,0);rep(i,0,k*2)x[i]*=z2[i];NTT(x,1);x.pop_back();x=x.inte();rep(i,k,min(n,k*2))x[i]+=(*this)[i];rep(i,0,k)x[i]=0;NTT(x,0);rep(i,0,k*2)x[i]*=y[i];NTT(x,1);b.insert(b.end(),x.begin()+k,x.end());} b.resize(n); return b;}Poly pow(ll t){int n=this->size(),k=0; while(k<n and (*this)[k]==0)k++;Poly res(n); if(t*k>=n)return res;n-=t*k; Poly g(n); T c=(*this)[k],ic=T(1)/c;rep(i,0,n)g[i]=(*this)[i+k]*ic;g=g.log(); for(auto& x:g)x*=t; g=g.exp();c=c.pow(t); rep(i,0,n)res[i+t*k]=g[i]*c; return res;}void NTT(vector<T>& a,bool inv)const;};/*** @brief Formal Power Series (NTT-friendly mod)*/#line 7 "sol.cpp"using Fp=fp<998244353>;NTT<Fp,3> ntt;template<>void Poly<Fp>::NTT(vector<Fp>& v,bool inv)const{return ntt.ntt(v,inv);}#line 2 "library/Math/bbla.hpp"#line 2 "library/FPS/berlekampmassey.hpp"template<typename T>vector<T> BerlekampMassey(vector<T>& a){int n=a.size(); T d=1;vector<T> b(1),c(1);b[0]=c[0]=1;rep(j,1,n+1){int l=c.size(),m=b.size();T x=0;rep(i,0,l)x+=c[i]*a[j-l+i];b.push_back(0);m++;if(x==0)continue;T coeff=-x/d;if(l<m){auto tmp=c;c.insert(c.begin(),m-l,0);rep(i,0,m)c[m-1-i]+=coeff*b[m-1-i];b=tmp; d=x;}else rep(i,0,m)c[l-1-i]+=coeff*b[m-1-i];}return c;}/*** @brief Berlekamp Massey Algorithm*/#line 2 "library/Utility/random.hpp"struct Random{random_device rnd;unsigned x=123456789,y=362436069,z=521288629,w=rnd();Random(){}unsigned get(){unsigned t=x^(x<<11);x=y,y=z,z=w;return w=(w^(w<<19))^(t^(t>>8));}unsigned get(unsigned L){return get()%(L+1);}template<typename T>T get(T L,T R){return get(R-L)+L;}double uniform(){return double(get())/UINT_MAX;}string str(int n){string ret;rep(i,0,n)ret+=get('a','z');return ret;}template<typename Iter>void shuffle(Iter first,Iter last){if(first==last)return;int len=1;for(auto it=first+1;it!=last;it++){len++;int j=get(0,len-1);if(j!=len-1)iter_swap(it,first+j);}}template<typename T>vector<T> select(int n,T L,T R){set<T> ret;while(ret.size()<n)ret.insert(get(L,R));return {ALL(ret)};}};/*** @brief Random*/#line 6 "library/Math/bbla.hpp"Random genBBLA;template<typename T>Poly<T> RandPoly(int n){Poly<T> ret(n);for(auto& x:ret)x=genBBLA.get(1,T::get_mod()-1);return ret;}template<typename T>struct SparseMatrix{vector<T> base;SparseMatrix(int n):base(n,1){}int size()const{return base.size();}friend Poly<T> operator*(const SparseMatrix<T>& A,const Poly<T>& b){Poly<T> ret=A.apply(b);rep(i,0,ret.size())ret[i]*=A.base[i];return ret;}void mul(int i,T x){base[i]*=x;}Poly<T> apply(const Poly<T>& b)const;};template<typename T>Poly<T> MinPolyforVector(const vector<Poly<T>>& b){int n=b.size(),m=b[0].size();Poly<T> base=RandPoly<T>(m),a(n);rep(i,0,n)rep(j,0,m)a[i]+=base[j]*b[i][j];return Poly<T>(BerlekampMassey(a)).rev();}template<typename T>Poly<T> MinPolyforMatrix(const SparseMatrix<T>& A){int n=A.size();Poly<T> base=RandPoly<T>(n);vector<Poly<T>> b(n*2+1);rep(i,0,n*2+1)b[i]=base,base=A*base;return MinPolyforVector(b);}template<typename T>Poly<T> FastPow(const SparseMatrix<T>& A,Poly<T> b,ll t){int n=A.size();auto mp=MinPolyforMatrix(A);Poly<T> cs({T(1)}),base({T(0),T(1)});while(t){if(t&1)cs=(cs*base)%mp;base=base.square();base%=mp;t>>=1;}Poly<T> ret(n);for(auto& c:cs)ret+=b*c,b=A*b;return ret;}template<typename T>T FastDet(const SparseMatrix<T>& A){int n=A.size();for(;;){Poly<T> d=RandPoly<T>(n);SparseMatrix<T> AD=A;rep(i,0,n)AD.mul(i,d[i]);auto mp=MinPolyforMatrix(AD);if(mp.back()==0)return 0;if(int(mp.size())!=n+1)continue;T ret=mp.back(),base=1;if(n&1)ret=-ret;for(auto& v:d)base*=v;return ret/base;}}/*** @brief Black Box Linear Algebra*/#line 12 "sol.cpp"vector<int> as,bs,cs;template<>Poly<Fp> SparseMatrix<Fp>::apply(const Poly<Fp>& b)const{Poly<Fp> ret(b.size());rep(i,0,as.size()){ret[as[i]]+=b[bs[i]]*cs[i];}return ret;}FastIO io;int main(){int k,m;ll n;io.read(k,m,n);rep(_,0,m){int p,q,r;io.read(p,q,r);p--; q--; r--;as.push_back(p*k+q);bs.push_back(q*k+r);cs.push_back(1);}SparseMatrix<Fp> A(k*k);Poly<Fp> b(k*k);rep(i,0,k)b[i*k]=1;auto c=FastPow(A,b,n-2);Fp ret;rep(i,0,k)ret+=c[i];io.write(ret.v);return 0;}