結果

問題 No.1112 冥界の音楽
ユーザー tko919tko919
提出日時 2022-02-02 01:26:06
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 18,615 bytes
コンパイル時間 2,695 ms
コンパイル使用メモリ 228,280 KB
実行使用メモリ 88,088 KB
最終ジャッジ日時 2024-06-11 09:17:31
合計ジャッジ時間 7,804 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
10,624 KB
testcase_01 AC 1 ms
5,248 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 WA -
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 2 ms
5,376 KB
testcase_07 AC 1 ms
5,376 KB
testcase_08 AC 2 ms
5,376 KB
testcase_09 AC 2 ms
5,376 KB
testcase_10 AC 2 ms
5,376 KB
testcase_11 AC 2 ms
5,376 KB
testcase_12 AC 1 ms
5,376 KB
testcase_13 AC 1 ms
5,376 KB
testcase_14 WA -
testcase_15 WA -
testcase_16 AC 2 ms
5,376 KB
testcase_17 WA -
testcase_18 WA -
testcase_19 AC 1 ms
5,376 KB
testcase_20 WA -
testcase_21 WA -
testcase_22 WA -
testcase_23 WA -
testcase_24 AC 2 ms
5,376 KB
testcase_25 AC 2 ms
5,376 KB
testcase_26 TLE -
testcase_27 -- -
testcase_28 -- -
testcase_29 -- -
testcase_30 -- -
testcase_31 -- -
testcase_32 -- -
testcase_33 -- -
testcase_34 -- -
testcase_35 -- -
testcase_36 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#line 1 "library/Template/template.hpp"
#include <bits/stdc++.h>
using namespace std;
#define rep(i,a,b) for(int i=(int)(a);i<(int)(b);i++)
#define ALL(v) (v).begin(),(v).end()
using ll=long long int;
const int inf = 0x3fffffff;
const ll INF = 0x1fffffffffffffff;
template<typename T>inline bool chmax(T& a,T b){if(a<b){a=b;return 1;}return 0;}
template<typename T>inline bool chmin(T& a,T b){if(a>b){a=b;return 1;}return 0;}
#line 2 "library/Utility/fastio.hpp"
#include <unistd.h>
class FastIO{
static constexpr int L=1<<16;
char rdbuf[L];
int rdLeft=0,rdRight=0;
inline void reload(){
int len=rdRight-rdLeft;
memmove(rdbuf,rdbuf+rdLeft,len);
rdLeft=0,rdRight=len;
rdRight+=fread(rdbuf+len,1,L-len,stdin);
}
inline bool skip(){
for(;;){
while(rdLeft!=rdRight and rdbuf[rdLeft]<=' ')rdLeft++;
if(rdLeft==rdRight){
reload();
if(rdLeft==rdRight)return false;
}
else break;
}
return true;
}
template<typename T,enable_if_t<is_integral<T>::value,int> =0>inline bool _read(T& x){
if(!skip())return false;
if(rdLeft+20>=rdRight)reload();
bool neg=false;
if(rdbuf[rdLeft]=='-'){
neg=true;
rdLeft++;
}
x=0;
while(rdbuf[rdLeft]>='0' and rdLeft<rdRight){
x=x*10+(neg?-(rdbuf[rdLeft++]^48):(rdbuf[rdLeft++]^48));
}
return true;
}
template<typename T,enable_if_t<is_floating_point<T>::value,int> =0>inline bool _read(T& x){
if(!skip())return false;
if(rdLeft+20>=rdRight)reload();
bool neg=false;
if(rdbuf[rdLeft]=='-'){
neg=true;
rdLeft++;
}
x=0;
while(rdbuf[rdLeft]>='0' and rdbuf[rdLeft]<='9' and rdLeft<rdRight){
x=x*10+(rdbuf[rdLeft++]^48);
}
if(rdbuf[rdLeft]!='.')return true;
rdLeft++;
T base=.1;
while(rdbuf[rdLeft]>='0' and rdbuf[rdLeft]<='9' and rdLeft<rdRight){
x+=base*(rdbuf[rdLeft++]^48);
base*=.1;
}
if(neg)x=-x;
return true;
}
inline bool _read(char& x){
if(!skip())return false;
if(rdLeft+1>=rdRight)reload();
x=rdbuf[rdLeft++];
return true;
}
inline bool _read(string& x){
if(!skip())return false;
for(;;){
int pos=rdLeft;
while(pos<rdRight and rdbuf[pos]>' ')pos++;
x.append(rdbuf+rdLeft,pos-rdLeft);
if(rdLeft==pos)break;
rdLeft=pos;
if(rdLeft==rdRight)reload();
else break;
}
return true;
}
template<typename T>inline bool _read(vector<T>& v){
for(auto& x:v){
if(!_read(x))return false;
}
return true;
}
char wtbuf[L],tmp[50];
int wtRight=0;
inline void flush(){
fwrite(wtbuf,1,wtRight,stdout);
wtRight=0;
}
inline void _write(const char& x){
if(wtRight>L-32)flush();
wtbuf[wtRight++]=x;
}
inline void _write(const string& x){
for(auto& c:x)_write(c);
}
template<typename T,enable_if_t<is_integral<T>::value,int> =0>inline void _write(T x){
if(wtRight>L-32)flush();
if(x==0){
_write('0');
return;
}
else if(x<0){
_write('-');
if (__builtin_expect(x == std::numeric_limits<T>::min(), 0)) {
switch (sizeof(x)) {
case 2: _write("32768"); return;
case 4: _write("2147483648"); return;
case 8: _write("9223372036854775808"); return;
}
}
x=-x;
}
int pos=0;
while(x!=0){
tmp[pos++]=char((x%10)|48);
x/=10;
}
rep(i,0,pos)wtbuf[wtRight+i]=tmp[pos-1-i];
wtRight+=pos;
}
template<typename T>inline void _write(const vector<T>& v){
rep(i,0,v.size()){
if(i)_write(' ');
_write(v[i]);
}
}
public:
FastIO(){}
~FastIO(){flush();}
inline void read(){}
template <typename Head, typename... Tail>inline void read(Head& head,Tail&... tail){
assert(_read(head));
read(tail...);
}
template<bool ln=true,bool space=false>inline void write(){if(ln)_write('\n');}
template <bool ln=true,bool space=false,typename Head, typename... Tail>inline void write(const Head& head,const Tail&... tail){
if(space)_write(' ');
_write(head);
write<ln,true>(tail...);
}
};
/**
* @brief Fast IO
*/
#line 3 "sol.cpp"
#line 2 "library/Math/modint.hpp"
template<int mod=1000000007>struct fp {
int v; static int get_mod(){return mod;}
int inv() const{
int tmp,a=v,b=mod,x=1,y=0;
while(b)tmp=a/b,a-=tmp*b,swap(a,b),x-=tmp*y,swap(x,y);
if(x<0){x+=mod;} return x;
}
fp(ll x=0){init(x%mod+mod);}
fp& init(int x){v=(x<mod?x:x-mod); return *this;}
fp operator-()const{return fp()-*this;}
fp pow(ll t){fp res=1,b=*this; while(t){if(t&1)res*=b;b*=b;t>>=1;} return res;}
fp& operator+=(const fp& x){return init(v+x.v);}
fp& operator-=(const fp& x){return init(v+mod-x.v);}
fp& operator*=(const fp& x){v=ll(v)*x.v%mod; return *this;}
fp& operator/=(const fp& x){v=ll(v)*x.inv()%mod; return *this;}
fp operator+(const fp& x)const{return fp(*this)+=x;}
fp operator-(const fp& x)const{return fp(*this)-=x;}
fp operator*(const fp& x)const{return fp(*this)*=x;}
fp operator/(const fp& x)const{return fp(*this)/=x;}
bool operator==(const fp& x)const{return v==x.v;}
bool operator!=(const fp& x)const{return v!=x.v;}
friend istream& operator>>(istream& is,fp& x){return is>>x.v;}
friend ostream& operator<<(ostream& os,const fp& x){return os<<x.v;}
};
template<typename T>struct factorial {
vector<T> Fact,Finv,Inv;
factorial(int maxx){
Fact.resize(maxx); Finv.resize(maxx); Inv.resize(maxx);
Fact[0]=Fact[1]=Finv[0]=Finv[1]=Inv[1]=1;
rep(i,2,maxx){Fact[i]=Fact[i-1]*i;} Finv[maxx-1]=Fact[maxx-1].inv();
for(int i=maxx-1;i>=2;i--){Finv[i-1]=Finv[i]*i; Inv[i]=Finv[i]*Fact[i-1];}
}
T fact(int n,bool inv=0){if(n<0)return 0; return (inv?Finv[n]:Fact[n]);}
T inv(int n){if(n<0)return 0; return Inv[n];}
T nPr(int n,int r,bool inv=0){if(n<0||n<r||r<0)return 0; return fact(n,inv)*fact(n-r,inv^1);}
T nCr(int n,int r,bool inv=0){if(n<0||n<r||r<0)return 0; return fact(n,inv)*fact(r,inv^1)*fact(n-r,inv^1);}
T nHr(int n,int r,bool inv=0){return nCr(n+r-1,r,inv);}
};
/**
* @brief Modint
*/
#line 2 "library/Convolution/ntt.hpp"
template<typename T,unsigned p=3>struct NTT{
vector<T> rt,irt;
NTT(int lg=21){
unsigned m=T::get_mod()-1; T prt=p;
rt.resize(lg); irt.resize(lg);
rep(k,0,lg){
rt[k]=-prt.pow(m>>(k+2));
irt[k]=rt[k].inv();
}
}
void ntt(vector<T>& f,bool inv=0){
int n=f.size();
if(inv){
for(int m=1;m<n;m<<=1){ T w=1;
for(int s=0,t=0;s<n;s+=m*2){
for(int i=s,j=s+m;i<s+m;i++,j++){
auto x=f[i],y=f[j];
f[i]=x+y; f[j]=(x-y)*w;
} w*=irt[__builtin_ctz(++t)];
}
} T mul=T(n).inv(); rep(i,0,n)f[i]*=mul;
}else{
for(int m=n;m>>=1;){ T w=1;
for(int s=0,t=0;s<n;s+=m*2){
for(int i=s,j=s+m;i<s+m;i++,j++){
auto x=f[i],y=f[j]*w;
f[i]=x+y; f[j]=x-y;
} w*=rt[__builtin_ctz(++t)];
}
}
}
}
vector<T> mult(const vector<T>& a,const vector<T>& b,bool same=0){
if(a.empty() or b.empty())return vector<T>();
int n=a.size()+b.size()-1,m=1<<__lg(n*2-1);
vector<T> res(m); rep(i,0,a.size()){res[i]=a[i];} ntt(res);
if(same)rep(i,0,m)res[i]*=res[i];
else{
vector<T> c(m); rep(i,0,b.size())c[i]=b[i];
ntt(c); rep(i,0,m)res[i]*=c[i];
} ntt(res,1); res.resize(n); return res;
}
};
/**
* @brief Number Theoretic Transform
*/
#line 2 "library/FPS/fps.hpp"
template<typename T>struct Poly:vector<T>{
Poly(int n=0){this->assign(n,T());}
Poly(const vector<T>& f){this->assign(ALL(f));}
T eval(const T& x){
T res;
for(int i=this->size()-1;i>=0;i--)res*=x,res+=this->at(i);
return res;
}
Poly rev()const{Poly res=*this; reverse(ALL(res)); return res;}
void shrink(){while(!this->empty() and this->back()==0)this->pop_back();}
vector<T> mult(const vector<T>& a,const vector<T>& b,bool same=0)const{
if(a.empty() or b.empty())return vector<T>();
int n=a.size()+b.size()-1,m=1<<__lg(n*2-1);
vector<T> res(m);
rep(i,0,a.size())res[i]=a[i];
NTT(res,0);
if(same)rep(i,0,m)res[i]*=res[i];
else{
vector<T> c(m);
rep(i,0,b.size())c[i]=b[i];
NTT(c,0);
rep(i,0,m)res[i]*=c[i];
}
NTT(res,1);
res.resize(n);
return res;
}
Poly square()const{return Poly(mult(*this,*this,1));}
Poly operator+(const Poly& g)const{return Poly(*this)+=g;}
Poly operator+(const T& g)const{return Poly(*this)+=g;}
Poly operator-(const Poly& g)const{return Poly(*this)-=g;}
Poly operator-(const T& g)const{return Poly(*this)-=g;}
Poly operator*(const Poly& g)const{return Poly(*this)*=g;}
Poly operator*(const T& g)const{return Poly(*this)*=g;}
Poly operator/(const Poly& g)const{return Poly(*this)/=g;}
Poly operator%(const Poly& g)const{return Poly(*this)%=g;}
Poly& operator+=(const Poly& g){
if(g.size()>this->size())this->resize(g.size());
rep(i,0,g.size()){(*this)[i]+=g[i];} return *this;
}
Poly& operator+=(const T& g){
if(this->empty())this->push_back(0);
(*this)[0]+=g; return *this;
}
Poly& operator-=(const Poly& g){
if(g.size()>this->size())this->resize(g.size());
rep(i,0,g.size()){(*this)[i]-=g[i];} return *this;
}
Poly& operator-=(const T& g){
if(this->empty())this->push_back(0);
(*this)[0]-=g; return *this;
}
Poly& operator*=(const Poly& g){
*this=mult(*this,g,0);
return *this;
}
Poly& operator*=(const T& g){
rep(i,0,this->size())(*this)[i]*=g;
return *this;
}
Poly& operator/=(const Poly& g){
if(g.size()>this->size()){
this->clear(); return *this;
}
Poly g2=g;
reverse(ALL(*this));
reverse(ALL(g2));
int n=this->size()-g2.size()+1;
this->resize(n); g2.resize(n);
*this*=g2.inv(); this->resize(n);
reverse(ALL(*this));
shrink();
return *this;
}
Poly& operator%=(const Poly& g){*this-=*this/g*g; shrink(); return *this;}
Poly diff()const{
Poly res(this->size()-1);
rep(i,0,res.size())res[i]=(*this)[i+1]*(i+1);
return res;
}
Poly inte()const{
Poly res(this->size()+1);
for(int i=res.size()-1;i;i--)res[i]=(*this)[i-1]/i;
return res;
}
Poly log()const{
assert(this->front()==1); const int n=this->size();
Poly res=diff()*inv(); res=res.inte();
res.resize(n); return res;
}
Poly shift(const int& c)const{
const int n=this->size();
Poly res=*this,g(n); g[0]=1; rep(i,1,n)g[i]=g[i-1]*c/i;
vector<T> fact(n,1);
rep(i,0,n){
if(i)fact[i]=fact[i-1]*i;
res[i]*=fact[i];
}
res=res.rev();
res*=g;
res.resize(n);
res=res.rev();
rep(i,0,n)res[i]/=fact[i];
return res;
}
Poly inv()const{
const int n=this->size();
Poly res(1); res.front()=T(1)/this->front();
for(int k=1;k<n;k<<=1){
Poly f(k*2),g(k*2);
rep(i,0,min(n,k*2))f[i]=(*this)[i];
rep(i,0,k)g[i]=res[i];
NTT(f,0);
NTT(g,0);
rep(i,0,k*2)f[i]*=g[i];
NTT(f,1);
rep(i,0,k){f[i]=0; f[i+k]=-f[i+k];}
NTT(f,0);
rep(i,0,k*2)f[i]*=g[i];
NTT(f,1);
rep(i,0,k)f[i]=res[i];
swap(res,f);
} res.resize(n); return res;
}
Poly exp()const{
const int n=this->size();
if(n==1)return Poly({T(1)});
Poly b(2),c(1),z1,z2(2);
b[0]=c[0]=z2[0]=z2[1]=1; b[1]=(*this)[1];
for(int k=2;k<n;k<<=1){
Poly y=b;
y.resize(k*2);
NTT(y,0);
z1=z2;
Poly z(k);
rep(i,0,k)z[i]=y[i]*z1[i];
NTT(z,1);
rep(i,0,k>>1)z[i]=0;
NTT(z,0);
rep(i,0,k)z[i]*=-z1[i];
NTT(z,1);
c.insert(c.end(),z.begin()+(k>>1),z.end());
z2=c;
z2.resize(k*2);
NTT(z2,0);
Poly x=*this;
x.resize(k);
x=x.diff();x.resize(k);
NTT(x,0);
rep(i,0,k)x[i]*=y[i];
NTT(x,1);
Poly bb=b.diff();
rep(i,0,k-1)x[i]-=bb[i];
x.resize(k*2);
rep(i,0,k-1){x[k+i]=x[i]; x[i]=0;}
NTT(x,0);
rep(i,0,k*2)x[i]*=z2[i];
NTT(x,1);
x.pop_back();
x=x.inte();
rep(i,k,min(n,k*2))x[i]+=(*this)[i];
rep(i,0,k)x[i]=0;
NTT(x,0);
rep(i,0,k*2)x[i]*=y[i];
NTT(x,1);
b.insert(b.end(),x.begin()+k,x.end());
} b.resize(n); return b;
}
Poly pow(ll t){
int n=this->size(),k=0; while(k<n and (*this)[k]==0)k++;
Poly res(n); if(t*k>=n)return res;
n-=t*k; Poly g(n); T c=(*this)[k],ic=T(1)/c;
rep(i,0,n)g[i]=(*this)[i+k]*ic;
g=g.log(); for(auto& x:g)x*=t; g=g.exp();
c=c.pow(t); rep(i,0,n)res[i+t*k]=g[i]*c; return res;
}
void NTT(vector<T>& a,bool inv)const;
};
/**
* @brief Formal Power Series (NTT-friendly mod)
*/
#line 7 "sol.cpp"
using Fp=fp<998244353>;
NTT<Fp,3> ntt;
template<>void Poly<Fp>::NTT(vector<Fp>& v,bool inv)const{return ntt.ntt(v,inv);}
#line 2 "library/Math/bbla.hpp"
#line 2 "library/FPS/berlekampmassey.hpp"
template<typename T>vector<T> BerlekampMassey(vector<T>& a){
int n=a.size(); T d=1;
vector<T> b(1),c(1);
b[0]=c[0]=1;
rep(j,1,n+1){
int l=c.size(),m=b.size();
T x=0;
rep(i,0,l)x+=c[i]*a[j-l+i];
b.push_back(0);
m++;
if(x==0)continue;
T coeff=-x/d;
if(l<m){
auto tmp=c;
c.insert(c.begin(),m-l,0);
rep(i,0,m)c[m-1-i]+=coeff*b[m-1-i];
b=tmp; d=x;
}
else rep(i,0,m)c[l-1-i]+=coeff*b[m-1-i];
}
return c;
}
/**
* @brief Berlekamp Massey Algorithm
*/
#line 2 "library/Utility/random.hpp"
struct Random{
random_device rnd;
unsigned x=123456789,y=362436069,z=521288629,w=rnd();
Random(){}
unsigned get(){
unsigned t=x^(x<<11);
x=y,y=z,z=w;
return w=(w^(w<<19))^(t^(t>>8));
}
unsigned get(unsigned L){
return get()%(L+1);
}
template<typename T>T get(T L,T R){
return get(R-L)+L;
}
double uniform(){
return double(get())/UINT_MAX;
}
string str(int n){
string ret;
rep(i,0,n)ret+=get('a','z');
return ret;
}
template<typename Iter>void shuffle(Iter first,Iter last){
if(first==last)return;
int len=1;
for(auto it=first+1;it!=last;it++){
len++;
int j=get(0,len-1);
if(j!=len-1)iter_swap(it,first+j);
}
}
template<typename T>vector<T> select(int n,T L,T R){
set<T> ret;
while(ret.size()<n)ret.insert(get(L,R));
return {ALL(ret)};
}
};
/**
* @brief Random
*/
#line 6 "library/Math/bbla.hpp"
Random genBBLA;
template<typename T>Poly<T> RandPoly(int n){
Poly<T> ret(n);
for(auto& x:ret)x=genBBLA.get(1,T::get_mod()-1);
return ret;
}
template<typename T>struct SparseMatrix{
vector<T> base;
SparseMatrix(int n):base(n,1){}
int size()const{return base.size();}
friend Poly<T> operator*(const SparseMatrix<T>& A,const Poly<T>& b){
Poly<T> ret=A.apply(b);
rep(i,0,ret.size())ret[i]*=A.base[i];
return ret;
}
void mul(int i,T x){base[i]*=x;}
Poly<T> apply(const Poly<T>& b)const;
};
template<typename T>Poly<T> MinPolyforVector(const vector<Poly<T>>& b){
int n=b.size(),m=b[0].size();
Poly<T> base=RandPoly<T>(m),a(n);
rep(i,0,n)rep(j,0,m)a[i]+=base[j]*b[i][j];
return Poly<T>(BerlekampMassey(a)).rev();
}
template<typename T>Poly<T> MinPolyforMatrix(const SparseMatrix<T>& A){
int n=A.size();
Poly<T> base=RandPoly<T>(n);
vector<Poly<T>> b(n*2+1);
rep(i,0,n*2+1)b[i]=base,base=A*base;
return MinPolyforVector(b);
}
template<typename T>Poly<T> FastPow(const SparseMatrix<T>& A,Poly<T> b,ll t){
int n=A.size();
auto mp=MinPolyforMatrix(A);
Poly<T> cs({T(1)}),base({T(0),T(1)});
while(t){
if(t&1)cs=(cs*base)%mp;
base=base.square();
base%=mp;
t>>=1;
}
Poly<T> ret(n);
for(auto& c:cs)ret+=b*c,b=A*b;
return ret;
}
template<typename T>T FastDet(const SparseMatrix<T>& A){
int n=A.size();
for(;;){
Poly<T> d=RandPoly<T>(n);
SparseMatrix<T> AD=A;
rep(i,0,n)AD.mul(i,d[i]);
auto mp=MinPolyforMatrix(AD);
if(mp.back()==0)return 0;
if(int(mp.size())!=n+1)continue;
T ret=mp.back(),base=1;
if(n&1)ret=-ret;
for(auto& v:d)base*=v;
return ret/base;
}
}
/**
* @brief Black Box Linear Algebra
*/
#line 12 "sol.cpp"
vector<int> as,bs,cs;
template<>Poly<Fp> SparseMatrix<Fp>::apply(const Poly<Fp>& b)const{
Poly<Fp> ret(b.size());
rep(i,0,as.size()){
ret[as[i]]+=b[bs[i]]*cs[i];
}
return ret;
}
FastIO io;
int main(){
int k,m;
ll n;
io.read(k,m,n);
rep(_,0,m){
int p,q,r;
io.read(p,q,r);
p--; q--; r--;
as.push_back(p*k+q);
bs.push_back(q*k+r);
cs.push_back(1);
}
SparseMatrix<Fp> A(k*k);
Poly<Fp> b(k*k);
rep(i,0,k)b[i*k]=1;
auto c=FastPow(A,b,n-2);
Fp ret;
rep(i,0,k)ret+=c[i];
io.write(ret.v);
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0