結果
問題 | No.1674 Introduction to XOR |
ユーザー | Yourein |
提出日時 | 2022-02-04 17:20:46 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 3 ms / 1,000 ms |
コード長 | 8,139 bytes |
コンパイル時間 | 1,600 ms |
コンパイル使用メモリ | 124,912 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-06-11 11:20:04 |
合計ジャッジ時間 | 2,217 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 3 ms
5,376 KB |
testcase_08 | AC | 2 ms
5,376 KB |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 2 ms
5,376 KB |
testcase_12 | AC | 2 ms
5,376 KB |
testcase_13 | AC | 2 ms
5,376 KB |
testcase_14 | AC | 2 ms
5,376 KB |
testcase_15 | AC | 2 ms
5,376 KB |
testcase_16 | AC | 2 ms
5,376 KB |
testcase_17 | AC | 2 ms
5,376 KB |
testcase_18 | AC | 2 ms
5,376 KB |
testcase_19 | AC | 2 ms
5,376 KB |
testcase_20 | AC | 2 ms
5,376 KB |
testcase_21 | AC | 2 ms
5,376 KB |
testcase_22 | AC | 2 ms
5,376 KB |
testcase_23 | AC | 2 ms
5,376 KB |
ソースコード
#include <iostream> #include <iomanip> #include <cmath> #include <algorithm> #include <string> #include <vector> #include <map> #include <unordered_map> #include <set> #include <unordered_set> #include <queue> #include <list> //Binary Indexed Tree // #include<ext/pb_ds/assoc_container.hpp> // #include<ext/pb_ds/tree_policy.hpp> // #include<ext/pb_ds/tag_and_trait.hpp> // using namespace __gnu_pbds; //Binary Indexed Tree using namespace std; using ll = long long; using ld = long double; #define all(x) x.begin(),x.end() #define rall(x) x.rbegin(),x.rend() //Vector in template <typename T> istream &operator>>(istream &is, vector<T> &x){ for (auto &y:x) is >> y; return is; } //Vector in //Vector out template <typename T> ostream &operator<<(ostream &os, vector<T> &x){ for (long long e = 0; e < (int)x.size(); e++){ if (e == (int)x.size()-1) os << x[e]; else os << x[e] << " "; } return os; } //Vector out namespace cpio{ //IO library for Competitive-Programming struct scanner { private: struct reader { template <typename T> operator T() const {T buf; std::cin >> buf; return buf;} }; public: scanner() {std::cin.sync_with_stdio(false); std::cin.tie(nullptr);} reader operator()() const {return reader();} }; //Debug out void dout(){ cerr << "\n"; } template<typename T, typename... Ts> void dout(const T& a, const Ts&... b){ cerr << a; (cerr << ... << (cerr << ' ', b)); cerr << "\n"; } template<typename... T> void input(T&... a){ (cin >> ... >> a); } } namespace cpmath{ //Math library for Competitive-Programming const ll mod97 = 1000000007; const ll mod99 = 1000000009; const ll mod89 = 998244353; const long double pi = 3.14159265359; std::unordered_set<long long> allowed_mod; std::unordered_set<long long> unallowed_mod; constexpr int DX4[4] = {1, 0, -1, 0}; constexpr int DY4[4] = {0, 1, 0, -1}; constexpr int DX8[8] = {-1, 0, 1, -1, 1, -1, 0, 1}; constexpr int DY8[8] = {-1, -1, -1, 0, 0, 1, 1, 1}; ll factorial(ll a, ll b = -1, const ll fmod = -1){ ll ans = 1; if (fmod > 1) { if (b == -1) for (ll i = a; i > 1; i--) ans = ((ans%fmod)*(i%fmod))%fmod; else for (ll i = a; i >= b; i--) ans = ((ans%fmod)*(i%fmod))%fmod; } else{ if (b == -1) for (ll i = a; i > 1; i--) ans = ans*i; else for(ll i = a; i >= b; i--) ans = ans*i; } return ans; } ll fastpow(ll m, ll p){ if (p == 0) return 1; if (p%2 == 0){ ll t = fastpow(m, p/2); return t*t; } return m*fastpow(m, p-1); } ll modpow(ll m, ll p, const ll fmod){ if (p == 0) return 1; if (p%2 == 0){ ll t = modpow(m, p/2, fmod); return (t*t)%fmod; } return (m*modpow(m, p-1, fmod))%fmod; } ld dtor(const ld deg){return deg*(pi/(ld)180);} string basen(ll raw, int to){ char c[] = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F'}; string res = ""; while(raw){ res.push_back(c[raw%to]); raw/=to; } reverse(res.begin(), res.end()); return res; } template <typename T = long long> class modint{ private: T num; long long mod; bool set_prime_flag; public: explicit modint(T n, long long m = cpmath::mod99, bool pflag = true){ num = static_cast<T>(n); set_prime_flag = pflag; if (pflag == true){ if (mod_is_prime(m)) mod = m; else throw std::invalid_argument("Invalid value for mod: Check mod is prime number or set plag to false"); } else mod = m; } //modint constructer //+ operator constexpr modint operator+(modint &t){return modint((this->raw()+t.raw())%this->mod, this->mod, this->set_prime_flag);} constexpr modint operator+(long long t){return modint((this->raw()+t)%this->mod, this->mod, this->set_prime_flag);} constexpr modint operator+=(modint &t){ this->num = (this->raw()+t.raw())%mod; return modint(this->num, mod, set_prime_flag); } constexpr modint operator+=(long long t){ this->num = (this->raw()+t)%mod; return modint(this->num, mod, set_prime_flag); } //+ operator //- operator constexpr modint operator-(modint &t){return modint(((this->raw()-t.raw())%this->mod+this->mod)%this->mod, this->mod, this->set_prime_flag);} constexpr modint operator-(long long t){return modint(((this->raw()-t)%this->mod+this->mod)%this->mod, this->mod, this->set_prime_flag);} constexpr modint operator-=(modint &t){ this->num = ((this->raw()-t.raw())%this->mod+this->mod)%this->mod; return modint(this->num, this->mod, this->set_prime_flag); } constexpr modint operator-=(long long t){ this->num = ((this->raw()+t)%this->mod+this->mod)%this->mod; return modint(this->num, mod, this->set_prime_flag); } //- operator //* operator constexpr modint operator*(modint &t){return modint((this->raw()*t.raw())%this->mod, this->mod, this->set_prime_flag);} constexpr modint operator*(long long t){return modint((this->raw()*(t%mod))%this->mod, this->mod, this->set_prime_flag);} constexpr modint operator*= (modint &t){ this->num = (this->raw()*t.raw())%this->mod; return modint(this->num, this->mod, this->set_prime_flag); } constexpr modint operator*=(long long t){ this->num = (this->raw()*(t%mod))%mod; return modint(this->num, this->mod, this->set_prime_flag); } //* operator //= operator constexpr modint operator=(long long t){ this->num = t%mod; return modint(this->num, this->mod, this->set_prime_flag); } //= operator void plus(T n){num = (num+(n%mod))%mod;} void minus(T n){num = ((num-(n%mod))%mod+mod)%mod;} void multi(T n){num = ((num%mod)*(n%mod))%mod;} void div(T n){ if (set_prime_flag == false) throw std::logic_error("Not Divisible in case you don't set pflag true"); else num = (num*inversed(n))%mod; } T raw(){return num;} private: long long inversed(ll n){ return cpmath::modpow(n, mod-2, mod); } bool mod_is_prime(int n){ if (n == cpmath::mod97 || n == cpmath::mod99 || n == cpmath::mod89 || cpmath::allowed_mod.count(n) > 0){ return true; } else if (cpmath::unallowed_mod.count(n) > 0){ return false; } else{ for (ll i = 2; i*i <= n; i++){ if (n%i == 0) { cpmath::unallowed_mod.insert(n); return false; } } cpmath::allowed_mod.insert(n); return true; } } //mod_is_prime }; //modint } cpio::scanner in; using cpio::dout; using cpio::input; using cpmath::mod89; using cpmath::mod97; using cpmath::mod99; using cpmath::modint; //using cpmath::DX4; //using cpmath::DY4; //using cpmath::DX8; //using cpmath::DY8; //GNU Binary Indexed Tree // template<typename T> // using gtree = tree<T, null_type, greater<T>, rb_tree_tag, tree_order_statistics_node_update>; int main(){ int n = in(); vector<ll> a(n); cin >> a; ll mask = 0; for (int i = 0; i < n; i++) mask |= a[i]; string smask = cpmath::basen(mask, 2); reverse(all(smask)); ll ans = 1; for (auto x : smask){ if (x == '1') ans = ans << 1; else break; } cout << ans << endl; }