結果
問題 | No.1832 NAND Reversible |
ユーザー | torisasami4 |
提出日時 | 2022-02-04 23:57:30 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 32 ms / 2,000 ms |
コード長 | 7,587 bytes |
コンパイル時間 | 2,777 ms |
コンパイル使用メモリ | 224,940 KB |
実行使用メモリ | 18,944 KB |
最終ジャッジ日時 | 2024-06-11 13:07:22 |
合計ジャッジ時間 | 4,245 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,816 KB |
testcase_02 | AC | 2 ms
6,940 KB |
testcase_03 | AC | 30 ms
18,864 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 29 ms
18,944 KB |
testcase_07 | AC | 32 ms
18,688 KB |
testcase_08 | AC | 32 ms
18,688 KB |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | AC | 29 ms
18,816 KB |
testcase_11 | AC | 1 ms
5,376 KB |
testcase_12 | AC | 2 ms
5,376 KB |
testcase_13 | AC | 30 ms
18,688 KB |
testcase_14 | AC | 29 ms
18,816 KB |
testcase_15 | AC | 29 ms
18,816 KB |
testcase_16 | AC | 30 ms
18,816 KB |
testcase_17 | AC | 31 ms
18,816 KB |
testcase_18 | AC | 30 ms
18,816 KB |
testcase_19 | AC | 29 ms
18,816 KB |
testcase_20 | AC | 2 ms
5,376 KB |
testcase_21 | AC | 31 ms
18,688 KB |
testcase_22 | AC | 30 ms
18,816 KB |
testcase_23 | AC | 2 ms
5,376 KB |
testcase_24 | AC | 29 ms
18,816 KB |
testcase_25 | AC | 31 ms
18,816 KB |
ソースコード
#pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math") #include <bits/stdc++.h> using namespace std; typedef long long ll; #define pb(...) emplace_back(__VA_ARGS__) #define mp(a, b) make_pair(a, b) #define all(x) x.begin(), x.end() #define rall(x) x.rbegin(), x.rend() #define lscan(x) scanf("%I64d", &x) #define lprint(x) printf("%I64d", x) #define rep(i, n) for (ll i = 0; i < (n); i++) #define rep2(i, n) for (ll i = (ll)n - 1; i >= 0; i--) #define REP(i, l, r) for (ll i = l; i < (r); i++) #define REP2(i, l, r) for (ll i = (ll)r - 1; i >= (l); i--) #define siz(x) (ll) x.size() template <class T> using rque = priority_queue<T, vector<T>, greater<T>>; template <class T> bool chmin(T &a, const T &b) { if (b < a) { a = b; return 1; } return 0; } template <class T> bool chmax(T &a, const T &b) { if (b > a) { a = b; return 1; } return 0; } // __int128_t gcd(__int128_t a, __int128_t b) { // if (a == 0) // return b; // if (b == 0) // return a; // __int128_t cnt = a % b; // while (cnt != 0) { // a = b; // b = cnt; // cnt = a % b; // } // return b; // } long long extGCD(long long a, long long b, long long &x, long long &y) { if (b == 0) { x = 1; y = 0; return a; } long long d = extGCD(b, a % b, y, x); y -= a / b * x; return d; } struct UnionFind { vector<ll> data; int num; UnionFind(int sz) { data.assign(sz, -1); num = sz; } bool unite(int x, int y) { x = find(x), y = find(y); if (x == y) return (false); if (data[x] > data[y]) swap(x, y); data[x] += data[y]; data[y] = x; num--; return (true); } int find(int k) { if (data[k] < 0) return (k); return (data[k] = find(data[k])); } ll size(int k) { return (-data[find(k)]); } bool same(int x, int y) { return find(x) == find(y); } }; template <int mod> struct Mod_Int { int x; Mod_Int() : x(0) { } Mod_Int(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) { } static int get_mod() { return mod; } Mod_Int &operator+=(const Mod_Int &p) { if ((x += p.x) >= mod) x -= mod; return *this; } Mod_Int &operator-=(const Mod_Int &p) { if ((x += mod - p.x) >= mod) x -= mod; return *this; } Mod_Int &operator*=(const Mod_Int &p) { x = (int)(1LL * x * p.x % mod); return *this; } Mod_Int &operator/=(const Mod_Int &p) { *this *= p.inverse(); return *this; } Mod_Int &operator++() { return *this += Mod_Int(1); } Mod_Int operator++(int) { Mod_Int tmp = *this; ++*this; return tmp; } Mod_Int &operator--() { return *this -= Mod_Int(1); } Mod_Int operator--(int) { Mod_Int tmp = *this; --*this; return tmp; } Mod_Int operator-() const { return Mod_Int(-x); } Mod_Int operator+(const Mod_Int &p) const { return Mod_Int(*this) += p; } Mod_Int operator-(const Mod_Int &p) const { return Mod_Int(*this) -= p; } Mod_Int operator*(const Mod_Int &p) const { return Mod_Int(*this) *= p; } Mod_Int operator/(const Mod_Int &p) const { return Mod_Int(*this) /= p; } bool operator==(const Mod_Int &p) const { return x == p.x; } bool operator!=(const Mod_Int &p) const { return x != p.x; } Mod_Int inverse() const { assert(*this != Mod_Int(0)); return pow(mod - 2); } Mod_Int pow(long long k) const { Mod_Int now = *this, ret = 1; for (; k > 0; k >>= 1, now *= now) { if (k & 1) ret *= now; } return ret; } friend ostream &operator<<(ostream &os, const Mod_Int &p) { return os << p.x; } friend istream &operator>>(istream &is, Mod_Int &p) { long long a; is >> a; p = Mod_Int<mod>(a); return is; } }; ll mpow2(ll x, ll n, ll mod) { ll ans = 1; x %= mod; while (n != 0) { if (n & 1) ans = ans * x % mod; x = x * x % mod; n = n >> 1; } return ans; } ll modinv2(ll a, ll mod) { ll b = mod, u = 1, v = 0; while (b) { ll t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v); } u %= mod; if (u < 0) u += mod; return u; } // constexpr int mod = 1000000007; constexpr int mod = 998244353; // constexpr int mod = 31607; using mint = Mod_Int<mod>; mint mpow(mint x, ll n) { mint ans = 1; while (n != 0) { if (n & 1) ans *= x; x *= x; n = n >> 1; } return ans; } // ----- library ------- template <typename T> struct Combination { vector<T> _fac, _ifac; Combination() { init(); } Combination(int n) { init(n); } void init(int n = 2000010) { _fac.resize(n + 1), _ifac.resize(n + 1); _fac[0] = 1; for (int i = 1; i <= n; i++) _fac[i] = _fac[i - 1] * i; _ifac[n] = _fac[n].inverse(); for (int i = n; i >= 1; i--) _ifac[i - 1] = _ifac[i] * i; } T fac(int k) { return _fac[k]; } T ifac(int k) { return _ifac[k]; } T inv(int k) { return fac(k - 1) * ifac(k); } T P(int n, int k) { if (k < 0 || n < k) return 0; return fac(n) * ifac(n - k); } T C(int n, int k) { if (k < 0 || n < k) return 0; return fac(n) * ifac(n - k) * ifac(k); } T H(int n, int k) { // k個の区別できない玉をn個の区別できる箱に入れる場合の数 if (n < 0 || k < 0) return 0; return k == 0 ? 1 : C(n + k - 1, k); } T second_stirling_number(int n, int k) { // n個の区別できる玉を、k個の区別しない箱に、各箱に1個以上玉が入るように入れる場合の数 T ret = 0; for (int i = 0; i <= k; i++) { T tmp = C(k, i) * T(i).pow(n); ret += ((k - i) & 1) ? -tmp : tmp; } return ret * ifac(k); } T bell_number(int n, int k) { // n個の区別できる玉を、k個の区別しない箱に入れる場合の数 if (n == 0) return 1; k = min(k, n); vector<T> pref(k + 1); pref[0] = 1; for (int i = 1; i <= k; i++) { if (i & 1) pref[i] = pref[i - 1] - ifac(i); else pref[i] = pref[i - 1] + ifac(i); } T ret = 0; for (int i = 1; i <= k; i++) ret += T(i).pow(n) * ifac(i) * pref[k - i]; return ret; } }; using comb = Combination<mint>; // ----- library ------- int main() { ios::sync_with_stdio(false); std::cin.tie(nullptr); cout << fixed << setprecision(15); int n, a, b; cin >> n >> a; b = n - a; if (a == 0 || b == 0) { cout << 1 << endl; return 0; } if (a == 1) { cout << (b % 2 ? 2 : n - 2) << endl; return 0; } comb comb; mint ans = 0; rep(f, 2) rep(i, n + 1) ans += comb.C(b - f * 2 - 2 * i + a - 2, b - f * 2 - 2 * i) * (i + 1); cout << ans << endl; }