結果
問題 |
No.1907 DETERMINATION
|
ユーザー |
![]() |
提出日時 | 2022-02-06 13:24:03 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 763 ms / 4,000 ms |
コード長 | 5,437 bytes |
コンパイル時間 | 1,691 ms |
コンパイル使用メモリ | 104,072 KB |
実行使用メモリ | 7,040 KB |
最終ジャッジ日時 | 2024-12-24 12:24:32 |
合計ジャッジ時間 | 27,697 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 4 |
other | AC * 63 |
ソースコード
// Editorial 解 #include <cassert> #include <iostream> #include <utility> #include <vector> using namespace std; // Library Checker Characteristic Polynomial https://judge.yosupo.jp/problem/characteristic_polynomial // Upper Hessenberg reduction of square matrices // Complexity: O(n^3) // Reference: // http://www.phys.uri.edu/nigh/NumRec/bookfpdf/f11-5.pdf template <class Tp> void hessenberg_reduction(std::vector<std::vector<Tp>> &M) { assert(M.size() == M[0].size()); const int N = M.size(); for (int r = 0; r < N - 2; r++) { int piv = -1; for (int h = r + 1; h < N; ++h) { if (M[h][r] != 0) { piv = h; break; } } if (piv < 0) continue; for (int i = 0; i < N; i++) std::swap(M[r + 1][i], M[piv][i]); for (int i = 0; i < N; i++) std::swap(M[i][r + 1], M[i][piv]); const auto rinv = Tp(1) / M[r + 1][r]; for (int i = r + 2; i < N; i++) { const auto n = M[i][r] * rinv; for (int j = 0; j < N; j++) M[i][j] -= M[r + 1][j] * n; for (int j = 0; j < N; j++) M[j][r + 1] += M[j][i] * n; } } } // Characteristic polynomial of matrix M (|xI - M|) // Complexity: O(n^3) // R. Rehman, I. C. Ipsen, "La Budde's Method for Computing Characteristic Polynomials," 2011. template <class Tp> std::vector<Tp> characteristic_poly(std::vector<std::vector<Tp>> M) { hessenberg_reduction(M); const int N = M.size(); // p[i + 1] = (Characteristic polynomial of i-th leading principal minor) std::vector<std::vector<Tp>> p(N + 1); p[0] = {1}; for (int i = 0; i < N; i++) { p[i + 1].assign(i + 2, 0); for (int j = 0; j < i + 1; j++) p[i + 1][j + 1] += p[i][j]; for (int j = 0; j < i + 1; j++) p[i + 1][j] -= p[i][j] * M[i][i]; Tp betas = 1; for (int j = i - 1; j >= 0; j--) { betas *= M[j + 1][j]; Tp hb = -M[j][i] * betas; for (int k = 0; k < j + 1; k++) p[i + 1][k] += hb * p[j][k]; } } return p[N]; } // Library Checker ここまで template <class T> std::vector<T> det_of_first_degree_mat(std::vector<std::vector<T>> M0, std::vector<std::vector<T>> M1) { const int N = M0.size(); int multiply_by_x = 0; // 「特定の列に x をかける」操作を行った回数 T detAdetBinv = 1; // 解説中の 1 / (det A det B) の値 for (int p = 0; p < N; ++p) { // M1[p][p] に nonzero を持ってきて、M1 の第 p 列を掃き出す int pivot = -1; for (int row = p; row < N; ++row) { if (M1[row][p] != T()) { pivot = row; break; } } if (pivot < 0) { ++multiply_by_x; if (multiply_by_x > N) return std::vector<T>(N + 1); // M1 の第 p 列で pivot が見つからなかった場合、M0 + x M1 の第 p 列に x をかけたい // かける前に M1 の第 p 列を第 1 ~ (p - 1) 列を使って掃き出して、 // x をかけた後で x の二次の項が出てこないようにする for (int row = 0; row < p; ++row) { T v = M1[row][p]; M1[row][p] = 0; for (int i = 0; i < N; ++i) M0[i][p] -= v * M0[i][row]; } for (int i = 0; i < N; ++i) swap(M0[i][p], M1[i][p]); --p; // 第 p 列をもう一度やり直す この処理は高々 N 回しか走らないので全体の計算量は O(n^3) が保たれる continue; } if (pivot != p) { M1[pivot].swap(M1[p]); M0[pivot].swap(M0[p]); detAdetBinv *= -1; } // p 行目を定数倍して M1[p][p] == 1 にする T v = M1[p][p], vinv = v.inv(); detAdetBinv *= v; for (int col = 0; col < N; ++col) { M0[p][col] *= vinv; M1[p][col] *= vinv; } // p 行目を使用して M1 の p 列目を p 行目以外ゼロにする for (int row = 0; row < N; ++row) { if (row == p) continue; T v = M1[row][p]; for (int col = 0; col < N; ++col) { M0[row][col] -= M0[p][col] * v; M1[row][col] -= M1[p][col] * v; } } } // この時点で M1 = I なので det(xI + M0) を求める for (auto &vec : M0) { for (auto &x : vec) x = -x; } auto poly = characteristic_poly(M0); for (auto &x : poly) x *= detAdetBinv; poly.erase(poly.begin(), poly.begin() + multiply_by_x); poly.resize(N + 1); return poly; } #include <atcoder/modint> using mint = atcoder::modint998244353; int main() { cin.tie(nullptr), ios::sync_with_stdio(false); int N; cin >> N; vector M0(N, vector<mint>(N)), M1(N, vector<mint>(N)); for (auto &vec : M0) { for (auto &x : vec) { int v; cin >> v; x = v; } } for (auto &vec : M1) { for (auto &x : vec) { int v; cin >> v; x = v; } } auto ret = det_of_first_degree_mat(M0, M1); for (auto x : ret) cout << x.val() << '\n'; }