結果

問題 No.389 ロジックパズルの組み合わせ
ユーザー 8989
提出日時 2022-02-06 19:35:04
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 274 ms / 2,000 ms
コード長 3,662 bytes
コンパイル時間 315 ms
コンパイル使用メモリ 82,048 KB
実行使用メモリ 262,016 KB
最終ジャッジ日時 2024-06-11 13:55:32
合計ジャッジ時間 23,565 ms
ジャッジサーバーID
(参考情報)
judge1 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 99
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

def extgcd(a, b):
if b:
d, y, x = extgcd(b, a % b)
y -= (a // b)*x
return d, x, y
return a, 1, 0
class Combination:
def __init__(self, n_max, mod=10**9+7):
# O(n_max + log(mod))
self.mod = mod
f = 1
self.fac = fac = [f]
for i in range(1, n_max+1):
f = f * i % mod
fac.append(f)
f = pow(f, mod-2, mod)
self.facinv = facinv = [f]
for i in range(n_max, 0, -1):
f = f * i % mod
facinv.append(f)
facinv.reverse()
# "n " n
# "k " k
def __call__(self, n, r): # self.C
return self.fac[n] * self.facinv[r] % self.mod * self.facinv[n-r] % self.mod
def C(self, n, r):
if not 0 <= r <= n: return 0
return self.fac[n] * self.facinv[r] % self.mod * self.facinv[n-r] % self.mod
def P(self, n, r):
if not 0 <= r <= n: return 0
return self.fac[n] * self.facinv[n-r] % self.mod
def H(self, n, r):
if (n == 0 and r > 0) or r < 0: return 0
return self.fac[n+r-1] * self.facinv[r] % self.mod * self.facinv[n-1] % self.mod
def rising_factorial(self, n, r): # n * (n+1) * ... * (n+r-1)
return self.fac[n+r-1] * self.facinv[n-1] % self.mod
def stirling_first(self, n, k): # 1 lru_cache 使 O(nk) # n k
if n == k: return 1
if k == 0: return 0
return (self.stirling_first(n-1, k-1) + (n-1)*self.stirling_first(n-1, k)) % self.mod
def stirling_second(self, n, k): # 2 O(k + log(n)) # n k
if n == k: return 1 # n==k==0
return self.facinv[k] * sum((-1)**(k-m) * self.C(k, m) * pow(m, n, self.mod) for m in range(1, k+1)) % self.mod
def balls_and_boxes_3(self, n, k): # n k O(k + log(n))
return sum((-1)**(k-m) * self.C(k, m) * pow(m, n, self.mod) for m in range(1, k+1)) % self.mod
def bernoulli(self, n): # lru_cache 使 O(n**2 * log(mod))
if n == 0: return 1
if n % 2 and n >= 3: return 0 #
return (- pow(n+1, self.mod-2, self.mod) * sum(self.C(n+1, k) * self.bernoulli(k) % self.mod for k in range(n))) % self.mod
def faulhaber(self, k, n): # 0^k + 1^k + ... + (n-1)^k
# bernoulli lru_cache 使 O(k**2 * log(mod)) bernoulli O(k * log(mod))
return pow(k+1, self.mod-2, self.mod) * sum(self.C(k+1, j) * self.bernoulli(j) % self.mod * pow(n, k-j+1, self.mod) % self.mod for j in
                range(k+1)) % self.mod
def lah(self, n, k): # n k O(1)
return self.C(n-1, k-1) * self.fac[n] % self.mod * self.facinv[k] % self.mod
def bell(self, n, k): # n k O(k**2 + k*log(mod))
return sum(self.stirling_second(n, j) for j in range(1, k+1)) % self.mod
mod = 10**9+7
comb = Combination(1000000)
m = int(input())
h = list(map(int,input().split()))
if len(h) == 1 and h[0] == 0:
print(1)
exit()
P = sum(h) + len(h) - 1
if P > m:
print("NA")
exit()
a = comb.C(m - P + len(h),len(h))
if a == 0:
print("NA")
else:
print(a)
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0