結果
問題 | No.1832 NAND Reversible |
ユーザー |
|
提出日時 | 2022-02-10 22:27:20 |
言語 | Rust (1.83.0 + proconio) |
結果 |
WA
|
実行時間 | - |
コード長 | 6,659 bytes |
コンパイル時間 | 12,451 ms |
コンパイル使用メモリ | 400,500 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-06-26 05:49:46 |
合計ジャッジ時間 | 13,682 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 WA * 1 |
other | AC * 19 WA * 4 |
ソースコード
use std::io::Read;fn get_word() -> String {let stdin = std::io::stdin();let mut stdin=stdin.lock();let mut u8b: [u8; 1] = [0];loop {let mut buf: Vec<u8> = Vec::with_capacity(16);loop {let res = stdin.read(&mut u8b);if res.unwrap_or(0) == 0 || u8b[0] <= b' ' {break;} else {buf.push(u8b[0]);}}if buf.len() >= 1 {let ret = String::from_utf8(buf).unwrap();return ret;}}}#[allow(dead_code)]fn get<T: std::str::FromStr>() -> T { get_word().parse().ok().unwrap() }/// Verified by https://atcoder.jp/contests/abc198/submissions/21774342mod mod_int {use std::ops::*;pub trait Mod: Copy { fn m() -> i64; }#[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]pub struct ModInt<M> { pub x: i64, phantom: ::std::marker::PhantomData<M> }impl<M: Mod> ModInt<M> {// x >= 0pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) }fn new_internal(x: i64) -> Self {ModInt { x: x, phantom: ::std::marker::PhantomData }}pub fn pow(self, mut e: i64) -> Self {debug_assert!(e >= 0);let mut sum = ModInt::new_internal(1);let mut cur = self;while e > 0 {if e % 2 != 0 { sum *= cur; }cur *= cur;e /= 2;}sum}#[allow(dead_code)]pub fn inv(self) -> Self { self.pow(M::m() - 2) }}impl<M: Mod> Default for ModInt<M> {fn default() -> Self { Self::new_internal(0) }}impl<M: Mod, T: Into<ModInt<M>>> Add<T> for ModInt<M> {type Output = Self;fn add(self, other: T) -> Self {let other = other.into();let mut sum = self.x + other.x;if sum >= M::m() { sum -= M::m(); }ModInt::new_internal(sum)}}impl<M: Mod, T: Into<ModInt<M>>> Sub<T> for ModInt<M> {type Output = Self;fn sub(self, other: T) -> Self {let other = other.into();let mut sum = self.x - other.x;if sum < 0 { sum += M::m(); }ModInt::new_internal(sum)}}impl<M: Mod, T: Into<ModInt<M>>> Mul<T> for ModInt<M> {type Output = Self;fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) }}impl<M: Mod, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> {fn add_assign(&mut self, other: T) { *self = *self + other; }}impl<M: Mod, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> {fn sub_assign(&mut self, other: T) { *self = *self - other; }}impl<M: Mod, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> {fn mul_assign(&mut self, other: T) { *self = *self * other; }}impl<M: Mod> Neg for ModInt<M> {type Output = Self;fn neg(self) -> Self { ModInt::new(0) - self }}impl<M> ::std::fmt::Display for ModInt<M> {fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {self.x.fmt(f)}}impl<M: Mod> ::std::fmt::Debug for ModInt<M> {fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {let (mut a, mut b, _) = red(self.x, M::m());if b < 0 {a = -a;b = -b;}write!(f, "{}/{}", a, b)}}impl<M: Mod> From<i64> for ModInt<M> {fn from(x: i64) -> Self { Self::new(x) }}// Finds the simplest fraction x/y congruent to r mod p.// The return value (x, y, z) satisfies x = y * r + z * p.fn red(r: i64, p: i64) -> (i64, i64, i64) {if r.abs() <= 10000 {return (r, 1, 0);}let mut nxt_r = p % r;let mut q = p / r;if 2 * nxt_r >= r {nxt_r -= r;q += 1;}if 2 * nxt_r <= -r {nxt_r += r;q -= 1;}let (x, z, y) = red(nxt_r, r);(x, y - q * z, z)}} // mod mod_intmacro_rules! define_mod {($struct_name: ident, $modulo: expr) => {#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]struct $struct_name {}impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } }}}const MOD: i64 = 998_244_353;define_mod!(P, MOD);type MInt = mod_int::ModInt<P>;// Depends on MInt.rsfn fact_init(w: usize) -> (Vec<MInt>, Vec<MInt>) {let mut fac = vec![MInt::new(1); w];let mut invfac = vec![0.into(); w];for i in 1..w {fac[i] = fac[i - 1] * i as i64;}invfac[w - 1] = fac[w - 1].inv();for i in (0..w - 1).rev() {invfac[i] = invfac[i + 1] * (i as i64 + 1);}(fac, invfac)}// https://yukicoder.me/problems/no/1832 (3)// prefix の計算結果をキーにして DP をすることを考える。// X の途中結果としてあり得るのは 0, 1 の 2 通り、Y の途中結果としてあり得るのは// x |-> b, x |-> x ^ b (b は 0 か 1) の 4 通りである。// 全体で 8 状態あるので、0, 1 に対応する遷移行列 (8 * 8) をそれぞれ A, B とし、// 8 状態から 1 状態へとまとめる、0 と 1 に対応する列ベクトルをそれぞれ C, D とし、// 1 状態から 8 状態へと拡散させる、0 と 1 に対応する行ベクトルをそれぞれ E, F とすると、// 求める値は [x^{N-K}] (E + Fx) (A + Bx)^{N-2} (C + Dx) となる。// これは手に負えないのでもう少し簡略化する。// X の値は (N - i + 1) % 2 (一番右の 0 が i 番目にある場合) or N % 2 (すべて 1 の場合)// Y の値は i % 2 (一番左の 0 が i 番目にある場合) or N % 2 (すべて 1 の場合)// であるため、数列の 0 の位置の min, max を l, r とした場合、N + 1 - l - r が偶数であれば良い。(あるいは、数列が全て 1 であればよい。)fn main() {let n: usize = get();let k: usize = get();let (fac, invfac) = fact_init(n + 1);let mut tot = MInt::new(if k == 0 { 1 } else { 0 });for diff in 0..n {if (diff + 1 + n) % 2 != 0 { continue; }if diff == 0 {if k == 1 {tot += n as i64;}} else {if k >= 2 && diff - 1 >= k - 2 {tot += fac[diff - 1] * invfac[diff - 1 - (k - 2)]* invfac[k - 2] * (n - diff) as i64;}}}println!("{}", tot);}