結果
問題 | No.1835 Generalized Monty Hall Problem |
ユーザー | 👑 emthrm |
提出日時 | 2022-02-11 21:44:06 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 2 ms / 1,000 ms |
コード長 | 4,048 bytes |
コンパイル時間 | 1,938 ms |
コンパイル使用メモリ | 200,428 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-06-27 17:43:32 |
合計ジャッジ時間 | 2,589 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 2 ms
5,376 KB |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 2 ms
5,376 KB |
testcase_12 | AC | 2 ms
5,376 KB |
testcase_13 | AC | 2 ms
5,376 KB |
testcase_14 | AC | 2 ms
5,376 KB |
ソースコード
#define _USE_MATH_DEFINES #include <bits/stdc++.h> using namespace std; #define FOR(i,m,n) for(int i=(m);i<(n);++i) #define REP(i,n) FOR(i,0,n) #define ALL(v) (v).begin(),(v).end() using ll = long long; constexpr int INF = 0x3f3f3f3f; constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL; constexpr double EPS = 1e-8; constexpr int MOD = 1000000007; // constexpr int MOD = 998244353; constexpr int DY4[]{1, 0, -1, 0}, DX4[]{0, -1, 0, 1}; constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1}; constexpr int DX8[]{0, -1, -1, -1, 0, 1, 1, 1}; template <typename T, typename U> inline bool chmax(T& a, U b) { return a < b ? (a = b, true) : false; } template <typename T, typename U> inline bool chmin(T& a, U b) { return a > b ? (a = b, true) : false; } struct IOSetup { IOSetup() { std::cin.tie(nullptr); std::ios_base::sync_with_stdio(false); std::cout << fixed << setprecision(20); } } iosetup; template <typename T = long long> struct Rational { T num, den; Rational(): num(0), den(1) {} Rational(T num, T den = 1) : num(num), den(den) { assert(den != 0); reduce(); } template <typename Real = long double> Real to_real() const { return static_cast<Real>(num) / den; } Rational &operator+=(const Rational &x) { T g = std::__gcd(den, x.den); num = num * (x.den / g) + x.num * (den / g); den *= x.den / g; reduce(); return *this; } Rational &operator-=(const Rational &x) { return *this += -x; } Rational &operator*=(const Rational &x) { T g1 = std::__gcd(num, x.den), g2 = std::__gcd(den, x.num); num = (num / g1) * (x.num / g2); den = (den / g2) * (x.den / g1); reduce(); return *this; } Rational &operator/=(const Rational &x) { return *this *= Rational(x.den, x.num); } bool operator==(const Rational &x) const { return num == x.num && den == x.den; } bool operator!=(const Rational &x) const { return !(*this == x); } bool operator<(const Rational &x) const { return (x - *this).num > 0; } bool operator<=(const Rational &x) const { return !(x < *this); } bool operator>(const Rational &x) const { return x < *this; } bool operator>=(const Rational &x) const { return !(*this < x); } Rational &operator++() { if ((num += den) == 0) den = 1; return *this; } Rational operator++(int) { Rational res = *this; ++*this; return res; } Rational &operator--() { if ((num -= den) == 0) den = 1; return *this; } Rational operator--(int) { Rational res = *this; --*this; return res; } Rational operator+() const { return *this; } Rational operator-() const { return Rational(-num, den); } Rational operator+(const Rational &x) const { return Rational(*this) += x; } Rational operator-(const Rational &x) const { return Rational(*this) -= x; } Rational operator*(const Rational &x) const { return Rational(*this) *= x; } Rational operator/(const Rational &x) const { return Rational(*this) /= x; } friend std::ostream &operator<<(std::ostream &os, const Rational &x) { if (x.den == 1) return os << x.num; return os << x.num << '/' << x.den; } private: void reduce() { T g = std::__gcd(num, den); num /= g; den /= g; if (den < 0) { num = -num; den = -den; } } }; namespace std { template <typename T> Rational<T> abs(const Rational<T> &x) {Rational<T> res = x; if (res.num < 0) res.num = -res.num; return res; } template <typename T> Rational<T> max(const Rational<T> &a, const Rational<T> &b) { return a < b ? b : a; } template <typename T> Rational<T> min(const Rational<T> &a, const Rational<T> &b) { return a < b ? a : b; } template <typename T> struct numeric_limits<Rational<T>> { static constexpr Rational<T> max() { return std::numeric_limits<T>::max(); } static constexpr Rational<T> lowest() { return std::numeric_limits<T>::lowest(); } }; } // std // https://math.stackexchange.com/questions/346613/can-there-be-generalization-of-monty-hall-problem int main() { using rational = Rational<>; int n, m, k; cin >> n >> m >> k; rational ans((n - 1LL) * m, n * (n - 1LL - k)); cout << ans.num << ' ' << ans.den << '\n'; return 0; }