結果

問題 No.1812 Uribo Road
ユーザー koba-e964
提出日時 2022-02-17 22:59:24
言語 Rust
(1.83.0 + proconio)
結果
AC  
実行時間 76 ms / 5,000 ms
コード長 3,592 bytes
コンパイル時間 13,370 ms
コンパイル使用メモリ 377,972 KB
実行使用メモリ 6,944 KB
最終ジャッジ日時 2024-06-29 07:52:52
合計ジャッジ時間 14,314 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 4
other AC * 30
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

use std::cmp::*;
// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
macro_rules! input {
($($r:tt)*) => {
let stdin = std::io::stdin();
let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock()));
let mut next = move || -> String{
bytes.by_ref().map(|r|r.unwrap() as char)
.skip_while(|c|c.is_whitespace())
.take_while(|c|!c.is_whitespace())
.collect()
};
input_inner!{next, $($r)*}
};
}
macro_rules! input_inner {
($next:expr) => {};
($next:expr,) => {};
($next:expr, $var:ident : $t:tt $($r:tt)*) => {
let $var = read_value!($next, $t);
input_inner!{$next $($r)*}
};
}
macro_rules! read_value {
($next:expr, ( $($t:tt),* )) => { ($(read_value!($next, $t)),*) };
($next:expr, [ $t:tt ; $len:expr ]) => {
(0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()
};
($next:expr, usize1) => (read_value!($next, usize) - 1);
($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error"));
}
/*
* Dijkstra's algorithm.
* Verified by: AtCoder ABC164 (https://atcoder.jp/contests/abc164/submissions/12423853)
*/
struct Dijkstra {
edges: Vec<Vec<(usize, i64)>>, // adjacent list representation
}
impl Dijkstra {
fn new(n: usize) -> Self {
Dijkstra { edges: vec![Vec::new(); n] }
}
fn add_edge(&mut self, from: usize, to: usize, cost: i64) {
self.edges[from].push((to, cost));
}
/*
* This function returns a Vec consisting of the distances from vertex source.
*/
fn solve(&self, source: usize, inf: i64) -> Vec<i64> {
let n = self.edges.len();
let mut d = vec![inf; n];
// que holds (-distance, vertex), so that que.pop() returns the nearest element.
let mut que = std::collections::BinaryHeap::new();
que.push((0, source));
while let Some((cost, pos)) = que.pop() {
let cost = -cost;
if d[pos] <= cost {
continue;
}
d[pos] = cost;
for &(w, c) in &self.edges[pos] {
let newcost = cost + c;
if d[w] > newcost {
d[w] = newcost + 1;
que.push((-newcost, w));
}
}
}
return d;
}
}
fn main() {
input! {
n: usize, m: usize, k: usize,
r: [usize1; k],
abc: [(usize1, usize1, i64); m],
}
let mut dijk = Dijkstra::new(n);
for &(a, b, c) in &abc {
dijk.add_edge(a, b, c);
dijk.add_edge(b, a, c);
}
const INF: i64 = 1 << 50;
let s0 = dijk.solve(0, INF);
let s1 = dijk.solve(n - 1, INF);
let mut s = vec![vec![]; 2 * k];
let mut v = vec![0; 2 * k];
for i in 0..k {
let (a, b, _) = abc[r[i]];
s[2 * i] = dijk.solve(a, INF);
s[2 * i + 1] = dijk.solve(b, INF);
v[2 * i] = a;
v[2 * i + 1] = b;
}
let mut dp = vec![vec![INF; 1 << k]; 2 * k];
for i in 0..2 * k {
dp[i ^ 1][1 << (i / 2)] = s0[v[i]] + abc[r[i / 2]].2;
}
for bits in 1..1 << k {
for j in 0..2 * k {
if (bits & 1 << (j / 2)) == 0 { continue; }
let pre = bits ^ 1 << (j / 2);
for l in 0..2 * k {
dp[j][bits] = min(dp[j][bits], dp[l][pre] + s[l][v[j ^ 1]] + abc[r[j / 2]].2);
}
}
}
let mut ans = INF;
for j in 0..2 * k {
ans = min(ans, dp[j][(1 << k) - 1] + s1[v[j]]);
}
println!("{}", ans);
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0