結果

問題 No.1841 Long Long
ユーザー risujiroh
提出日時 2022-02-18 21:21:16
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 2 ms / 2,000 ms
コード長 29,706 bytes
コンパイル時間 2,948 ms
コンパイル使用メモリ 307,372 KB
最終ジャッジ日時 2025-01-27 23:37:53
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 15
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

static_assert(R"("
rep(input()).each(LAMBDA(print("Long")));
println();
")");
#define MULTI_CASES 0
#define INTERACTIVE 0
#define USE_INT 1
#ifndef LOCAL
#define LOCAL 0
#endif
#if !LOCAL
#define NDEBUG
#endif
#ifndef __GLIBCXX_TYPE_INT_N_0
#define __GLIBCXX_TYPE_INT_N_0 __int128
#endif
#include <bits/stdc++.h>
#include <unistd.h>
#include <x86intrin.h>
namespace r7h {
using namespace std;
void main(int);
} // namespace r7h
#if LOCAL
#include <utility/dump.hpp>
#else
#define DUMP(...) void(0)
#endif
#define LIFT(FN) \
[]<class... Ts_>(Ts_&&... xs_) -> decltype(auto) { return FN(static_cast<Ts_&&>(xs_)...); }
#define LAMBDA(...) \
[&]<class T1_ = void*, class T2_ = void*>([[maybe_unused]] T1_&& _1 = nullptr, [[maybe_unused]] T2_&& _2 = nullptr) \
-> decltype(auto) { \
return __VA_ARGS__; \
}
namespace r7h {
template <class F>
class fix : F {
public:
explicit fix(F f) : F(move(f)) {}
template <class... Ts>
decltype(auto) operator()(Ts&&... xs) const {
return F::operator()(ref(*this), forward<Ts>(xs)...);
}
};
template <class T>
decay_t<T> decay_copy(T&& x) {
return forward<T>(x);
}
template <class T>
auto ref_or_move(remove_reference_t<T>& x) {
if constexpr (is_reference_v<T> && !is_placeholder_v<decay_t<T>>) {
return ref(x);
} else {
return move(x);
}
}
template <class T, class D = decay_t<T>>
bool const is_lambda_expr = is_placeholder_v<D> || is_bind_expression_v<D>;
#define UNARY_LAMBDA(OP) \
template <class T, enable_if_t<is_lambda_expr<T>>* = nullptr> \
auto operator OP(T&& x) { \
return bind([]<class T_>(T_&& x_) -> decltype(auto) { return OP forward<T_>(x_); }, ref_or_move<T>(x)); \
}
#define BINARY_LAMBDA(OP) \
template <class T1, class T2, enable_if_t<is_lambda_expr<T1> || is_lambda_expr<T2>>* = nullptr> \
auto operator OP(T1&& x, T2&& y) { \
return bind( \
[]<class T1_, class T2_>(T1_&& x_, T2_&& y_) -> decltype(auto) { return forward<T1_>(x_) OP forward<T2_>(y_); }, \
ref_or_move<T1>(x), ref_or_move<T2>(y)); \
}
BINARY_LAMBDA(+=)
BINARY_LAMBDA(-=)
BINARY_LAMBDA(*=)
BINARY_LAMBDA(/=)
BINARY_LAMBDA(%=)
BINARY_LAMBDA(&=)
BINARY_LAMBDA(|=)
BINARY_LAMBDA(^=)
BINARY_LAMBDA(<<=)
BINARY_LAMBDA(>>=)
UNARY_LAMBDA(++)
UNARY_LAMBDA(--)
UNARY_LAMBDA(+)
UNARY_LAMBDA(-)
BINARY_LAMBDA(+)
BINARY_LAMBDA(-)
BINARY_LAMBDA(*)
BINARY_LAMBDA(/)
BINARY_LAMBDA(%)
UNARY_LAMBDA(~)
BINARY_LAMBDA(&)
BINARY_LAMBDA(|)
BINARY_LAMBDA(^)
BINARY_LAMBDA(<<)
BINARY_LAMBDA(>>)
BINARY_LAMBDA(==)
BINARY_LAMBDA(!=)
BINARY_LAMBDA(<)
BINARY_LAMBDA(>)
BINARY_LAMBDA(<=)
BINARY_LAMBDA(>=)
UNARY_LAMBDA(!)
BINARY_LAMBDA(&&)
BINARY_LAMBDA(||)
#undef UNARY_LAMBDA
#undef BINARY_LAMBDA
using namespace placeholders;
namespace scan_impl {
#if INTERACTIVE || LOCAL
bool scan(char& c) { return scanf(" %c", &c) != EOF; }
bool scan(string& s) {
char c;
if (!scan(c)) { return false; }
for (s = c;; s += c) {
c = char(getchar());
if (c <= ' ') {
ungetc(c, stdin);
break;
}
}
return true;
}
template <class T>
enable_if_t<is_integral_v<T>, bool> scan(T& x) {
char c;
if (!scan(c)) { return false; }
make_unsigned_t<common_type_t<T, int>> u = (c == '-' ? getchar() : c) & 15;
while (true) {
if (int t = getchar(); '0' <= t && t <= '9') {
(u *= 10) += t & 15;
} else {
ungetc(t, stdin);
break;
}
}
x = T(c == '-' ? -u : u);
return true;
}
template <class T>
enable_if_t<is_floating_point_v<T>, bool> scan(T& x) {
return scanf(is_same_v<T, float> ? "%f" : is_same_v<T, double> ? "%lf" : "%Lf", &x) != EOF;
}
#else
char buf[1 << 15];
char* ptr = buf;
char* last = buf;
bool scan(char& c) {
for (;; ++ptr) {
if (last - ptr < 64) {
last = move(ptr, last, buf);
ptr = buf;
last += read(STDIN_FILENO, last, end(buf) - last - 1);
*last = '\0';
}
if (ptr == last) { return false; }
if (' ' < *ptr) {
c = *ptr++;
return true;
}
}
}
bool scan(string& s) {
char c;
if (!scan(c)) { return false; }
for (s = c; ' ' < *ptr; s += c) { scan(c); }
return true;
}
template <class T>
enable_if_t<is_integral_v<T>, bool> scan(T& x) {
char c;
if (!scan(c)) { return false; }
make_unsigned_t<common_type_t<T, int>> u = (c == '-' ? *ptr++ : c) & 15;
while ('0' <= *ptr && *ptr <= '9') { (u *= 10) += *ptr++ & 15; }
x = T(c == '-' ? -u : u);
return true;
}
template <class T>
enable_if_t<is_floating_point_v<T>, bool> scan(T& x) {
char c;
if (!scan(c)) { return false; }
int n;
sscanf(--ptr, is_same_v<T, float> ? "%f%n" : is_same_v<T, double> ? "%lf%n" : "%Lf%n", &x, &n);
ptr += n;
return true;
}
#endif
template <class R>
auto scan(R&& r) -> decltype(begin(r), end(r), true) {
return all_of(begin(r), end(r), LIFT(scan));
}
template <class... Ts>
enable_if_t<sizeof...(Ts) != 1, bool> scan(Ts&&... xs) {
return (... && scan(forward<Ts>(xs)));
}
} // namespace scan_impl
using scan_impl::scan;
template <class T = int, class... Args>
T input(Args&&... args) {
T ret(forward<Args>(args)...);
[[maybe_unused]] bool res = scan(ret);
assert(res);
return ret;
}
namespace print_impl {
#if INTERACTIVE || LOCAL
template <char = 0>
void print(char c) {
if (c) { putchar(c); }
if (c == '\n') { fflush(stdout); }
}
template <char = 0, class T>
enable_if_t<is_integral_v<T>> print(T x) {
char buf[64];
char* ptr = to_chars(buf, end(buf), x).ptr;
for_each(buf, ptr, LIFT(print));
}
template <char = 0, class T>
enable_if_t<is_floating_point_v<T>> print(T x) {
printf(is_same_v<T, float> ? "%.6f" : is_same_v<T, double> ? "%.15f" : "%.18Lf", x);
}
#else
char buf[1 << 15];
char* ptr = buf;
__attribute__((destructor)) void flush() {
if (write(STDOUT_FILENO, buf, ptr - buf) == -1) { abort(); }
ptr = buf;
}
template <char = 0>
void print(char c) {
if (end(buf) - ptr < 64) { flush(); }
if (c) { *ptr++ = c; }
}
template <char = 0, class T>
enable_if_t<is_integral_v<T>> print(T x) {
print('\0');
ptr = to_chars(ptr, end(buf), x).ptr;
}
template <char = 0, class T>
enable_if_t<is_floating_point_v<T>> print(T x) {
print('\0');
ptr += snprintf(ptr, end(buf) - ptr, is_same_v<T, float> ? "%.6f" : is_same_v<T, double> ? "%.15f" : "%.18Lf", x);
}
#endif
template <char Sep = ' ', class R>
auto print(R&& r) -> void_t<decltype(begin(r), end(r))> {
[[maybe_unused]] char c = '\0';
for (auto&& e : r) {
if constexpr (!is_same_v<decay_t<decltype(e)>, char>) { print(exchange(c, Sep)); }
print(e);
}
}
template <char = 0>
void print(char const* s) {
print(string_view(s));
}
template <char Sep = ' ', class... Ts>
enable_if_t<sizeof...(Ts) != 1> print(Ts&&... xs) {
[[maybe_unused]] char c = '\0';
(..., (print(exchange(c, Sep)), print(forward<Ts>(xs))));
}
} // namespace print_impl
using print_impl::print;
template <char Sep = ' ', char End = '\n', class... Ts>
void println(Ts&&... xs) {
print<Sep>(forward<Ts>(xs)...);
print(End);
}
#if USE_INT
using ptrdiff_t = int;
#endif
using i8 = signed char;
using u8 = unsigned char;
using i16 = short;
using u16 = unsigned short;
using i32 = int;
using u32 = unsigned;
using i64 = long long;
using u64 = unsigned long long;
using i128 = __int128;
using u128 = unsigned __int128;
template <int> struct signed_int;
template <int> struct unsigned_int;
#define INT_TYPE(N) \
template <> struct signed_int<N> { using type = i##N; }; \
template <> struct unsigned_int<N> { using type = u##N; };
INT_TYPE(8)
INT_TYPE(16)
INT_TYPE(32)
INT_TYPE(64)
INT_TYPE(128)
#undef INT_TYPE
template <int N> using signed_int_t = typename signed_int<N>::type;
template <int N> using unsigned_int_t = typename unsigned_int<N>::type;
template <class T, int D = 1>
class vla {
static_assert(1 <= D);
array<ptrdiff_t, D> len;
T* dat;
public:
vla() = default;
explicit vla(array<ptrdiff_t, D> n) : len(n) {
partial_sum(rbegin(len), rend(len), rbegin(len), multiplies());
dat = new T[len[0]];
}
explicit vla(array<ptrdiff_t, D> n, T const& val) : vla(n) { fill_n(dat, len[0], val); }
vla(vla const& x) : len(x.len), dat(new T[len[0]]) { copy_n(x.dat, len[0], dat); }
vla(vla&& x) noexcept : vla() { *this = move(x); }
template <int D_ = D, enable_if_t<D_ == 1>* = nullptr>
explicit vla(ptrdiff_t n) : vla(array{n}) {}
template <int D_ = D, enable_if_t<D_ == 1>* = nullptr>
explicit vla(ptrdiff_t n, T const& val) : vla(array{n}, val) {}
vla& operator=(vla const& x) & { return *this = vla(x); }
vla& operator=(vla&& x) & noexcept {
swap(len, x.len);
swap(dat, x.dat);
return *this;
}
~vla() { delete[] dat; }
bool check(ptrdiff_t i) const { return 0 <= i && i < len[0]; }
T& operator[](ptrdiff_t i) & {
assert(check(i));
return dat[i];
}
T const& operator[](ptrdiff_t i) const& {
assert(check(i));
return dat[i];
}
T operator[](ptrdiff_t i) && {
assert(check(i));
return move(dat[i]);
}
bool check(array<ptrdiff_t, D> i) const {
for (int d = 0; d + 1 < D; ++d) {
if (i[d] < 0) { return false; }
if (len[d] <= i[d] * len[d + 1]) { return false; }
}
return 0 <= i.back() && i.back() < len.back();
}
ptrdiff_t flatten(array<ptrdiff_t, D> i) const {
assert(check(i));
return inner_product(i.begin(), i.end() - 1, len.begin() + 1, i.back());
}
T& operator[](array<ptrdiff_t, D> i) & { return dat[flatten(i)]; }
T const& operator[](array<ptrdiff_t, D> i) const& { return dat[flatten(i)]; }
T operator[](array<ptrdiff_t, D> i) && { return move(dat[flatten(i)]); }
T* begin() & { return dat; }
T const* begin() const& { return dat; }
T* end() & { return dat + len[0]; }
T const* end() const& { return dat + len[0]; }
ptrdiff_t size() const { return len[0]; }
};
template <class T>
auto operator++(T& x, int) -> decltype(++x, T(x)) {
T ret = x;
++x;
return ret;
}
template <class T>
auto operator--(T& x, int) -> decltype(--x, T(x)) {
T ret = x;
--x;
return ret;
}
#define BINARY_ARITH_OP(OP) \
template <class T1, class T2, class T = common_type_t<T1, T2>> \
auto operator OP(T1 const& x, T2 const& y) -> decltype(declval<T&>() OP##= y, T(x)) { \
T ret = T(x); \
ret OP##= y; \
return ret; \
}
BINARY_ARITH_OP(+)
BINARY_ARITH_OP(-)
BINARY_ARITH_OP(*)
BINARY_ARITH_OP(/)
BINARY_ARITH_OP(%)
BINARY_ARITH_OP(&)
BINARY_ARITH_OP(|)
BINARY_ARITH_OP(^)
BINARY_ARITH_OP(<<)
BINARY_ARITH_OP(>>)
#undef BINARY_ARITH_OP
#define COMPARISON_OP(OP, E) \
template <class T1, class T2> \
auto operator OP(T1 const& x, T2 const& y) -> decltype(E) { \
return E; \
}
COMPARISON_OP(!=, !(x == y))
COMPARISON_OP(>, y < x)
COMPARISON_OP(<=, !(y < x))
COMPARISON_OP(>=, !(x < y))
#undef COMPARISON_OP
template <class D, class C, class R>
class iter_base {
D& derived() & { return static_cast<D&>(*this); }
D const& derived() const& { return static_cast<D const&>(*this); }
bool equal(D const& x) const { return derived().equal(x); }
ptrdiff_t dist_to(D const& x) const { return derived().dist_to(x); }
public:
using iterator_category = C;
using value_type = decay_t<R>;
using difference_type = ptrdiff_t;
using pointer = void;
using reference = R;
#define REQUIRE(CATEGORY) template <class C_ = C, enable_if_t<is_convertible_v<C_, CATEGORY##_iterator_tag>>* = nullptr>
R operator*() const { return derived().deref(); }
REQUIRE(random_access) R operator[](ptrdiff_t n) const { return *(derived() + n); }
D& operator++() & {
derived().inc();
return derived();
}
REQUIRE(bidirectional) D& operator--() & {
derived().dec();
return derived();
}
REQUIRE(random_access) D& operator+=(ptrdiff_t n) & {
derived().advance(n);
return derived();
}
REQUIRE(random_access) D& operator-=(ptrdiff_t n) & {
derived().advance(-n);
return derived();
}
REQUIRE(random_access) friend D operator+(D const& x, ptrdiff_t n) {
D ret = x;
ret += n;
return ret;
}
REQUIRE(random_access) friend D operator+(ptrdiff_t n, D const& x) { return x + n; }
REQUIRE(random_access) friend D operator-(D const& x, ptrdiff_t n) {
D ret = x;
ret -= n;
return ret;
}
REQUIRE(random_access) friend ptrdiff_t operator-(D const& x, D const& y) {
return static_cast<iter_base const&>(y).dist_to(x);
}
friend bool operator==(D const& x, D const& y) { return static_cast<iter_base const&>(x).equal(y); }
REQUIRE(random_access) friend bool operator<(D const& x, D const& y) { return x - y < 0; }
#undef REQUIRE
};
template <class T>
class int_iter : public iter_base<int_iter<T>, random_access_iterator_tag, T> {
friend class int_iter::iter_base;
T v;
T deref() const { return v; }
bool equal(int_iter const& x) const { return v == x.v; }
void inc() & { ++v; }
void dec() & { --v; }
void advance(ptrdiff_t n) & { v += T(n); }
ptrdiff_t dist_to(int_iter const& x) const { return make_signed_t<T>(x.v - v); }
public:
int_iter() = default;
explicit int_iter(T v) : v(v) {}
};
template <class R>
auto sz(R&& r) -> decltype(ptrdiff_t(size(forward<R>(r)))) {
return ptrdiff_t(size(forward<R>(r)));
}
template <class T>
T div_floor(T x, T y) {
return T(x / y - ((x ^ y) < 0 && x % y));
}
template <class T>
T div_ceil(T x, T y) {
return T(x / y + (0 <= (x ^ y) && x % y));
}
template <class T, class U = T>
bool chmin(T& x, U&& y) {
return y < x ? x = forward<U>(y), true : false;
}
template <class T, class U = T>
bool chmax(T& x, U&& y) {
return x < y ? x = forward<U>(y), true : false;
}
template <class T>
T const inf_v = numeric_limits<T>::max() / 2;
int const inf = inf_v<int>;
mt19937_64 mt(_rdtsc());
template <class T>
T rand(T a, T b) {
if constexpr (is_integral_v<T>) {
return uniform_int_distribution(a, b)(mt);
} else {
return uniform_real_distribution(a, b)(mt);
}
}
#define TC(...) template <class __VA_ARGS__>
TC(R) using iter_t = decltype(begin(declval<R const&>()));
TC(R) using range_cat = typename iterator_traits<iter_t<R>>::iterator_category;
TC(R) using range_ref = typename iterator_traits<iter_t<R>>::reference;
TC() class view_base;
#define Z ptrdiff_t
#define IIT input_iterator_tag
#define FIT forward_iterator_tag
#define BIT bidirectional_iterator_tag
#define RAIT random_access_iterator_tag
#define VIEW(CLS, ...) \
class CLS : public view_base<CLS<__VA_ARGS__>> { \
friend class CLS::view_base;
#define VIEW_END(...) \
__VA_OPT__(Z size() const { return __VA_ARGS__; }) \
};
TC(R, class F)
VIEW(filtered, R, F)
struct iter : iter_base<iter, common_type_t<range_cat<R>, BIT>, range_ref<R>> {
filtered const* p;
iter_t<R> i;
range_ref<R> deref() const { return *i; }
bool equal(iter const& x) const { return i == x.i; }
void inc() & {
do { ++i; } while (i != end(p->r) && !invoke(p->f, *i));
}
void dec() & {
do { --i; } while (!invoke(p->f, *i));
}
};
R r;
[[no_unique_address]] F f;
iter b() const { return {{}, this, find_if(begin(r), end(r), ref(f))}; }
iter e() const { return {{}, this, end(r)}; }
public:
explicit filtered(R&& r, F f) : r(forward<R>(r)), f(move(f)) {}
VIEW_END()
TC(R, class F) filtered(R&&, F) -> filtered<R, F>;
TC(R, class F)
VIEW(mapped, R, F)
using ref = invoke_result_t<F const&, range_ref<R>>;
struct iter : iter_base<iter, common_type_t<range_cat<R>, RAIT>, ref> {
mapped const* p;
iter_t<R> i;
ref deref() const { return invoke(p->f, *i); }
bool equal(iter const& x) const { return i == x.i; }
void inc() & { ++i; }
void dec() & { --i; }
void advance(Z n) & { i += n; }
Z dist_to(iter const& x) const { return Z(x.i - i); }
};
R r;
[[no_unique_address]] F f;
iter b() const { return {{}, this, begin(r)}; }
iter e() const { return {{}, this, end(r)}; }
public:
explicit mapped(R&& r, F f) : r(forward<R>(r)), f(move(f)) {}
VIEW_END(sz(r))
TC(R, class F) mapped(R&&, F) -> mapped<R, F>;
TC(R)
VIEW(taken, R)
struct iter : iter_base<iter, common_type_t<range_cat<R>, FIT>, range_ref<R>> {
iter_t<R> i;
Z n;
range_ref<R> deref() const { return *i; }
bool equal(iter const& x) const { return n == x.n; }
void inc() & {
--n;
if (n) { ++i; }
}
};
R r;
Z n;
auto b() const {
if constexpr (is_convertible_v<range_cat<R>, RAIT>) {
return begin(r);
} else {
return iter{{}, n ? begin(r) : end(r), n};
}
}
auto e() const {
if constexpr (is_convertible_v<range_cat<R>, RAIT>) {
return begin(r) + size();
} else {
return iter{{}, end(r), 0};
}
}
public:
explicit taken(R&& r, Z n) : r(forward<R>(r)), n(max<Z>(n, 0)) { assert(0 <= n); }
VIEW_END(min(n, sz(r)))
TC(R) taken(R&&, Z) -> taken<R>;
TC(R, class F)
VIEW(taken_while, R, F)
static_assert(is_convertible_v<range_cat<R>, FIT>);
struct iter : iter_base<iter, common_type_t<range_cat<R>, FIT>, range_ref<R>> {
taken_while const* p;
iter_t<R> i;
range_ref<R> deref() const { return *i; }
bool equal(iter const& x) const { return i == x.i; }
void inc() & {
++i;
if (i != end(p->r) && !invoke(p->f, *i)) { i = end(p->r); }
}
};
R r;
[[no_unique_address]] F f;
iter b() const { return {{}, this, begin(r) == end(r) || !invoke(f, *begin(r)) ? end(r) : begin(r)}; }
iter e() const { return {{}, this, end(r)}; }
public:
explicit taken_while(R&& r, F f) : r(forward<R>(r)), f(move(f)) {}
VIEW_END()
TC(R, class F) taken_while(R&&, F) -> taken_while<R, F>;
TC(R)
VIEW(dropped, R)
R r;
Z n;
auto b() const {
if constexpr (is_convertible_v<range_cat<R>, RAIT>) {
return begin(r) + min(n, sz(r));
} else {
auto ret = begin(r);
for (Z _ = n; _-- && ret != end(r);) { ++ret; }
return ret;
}
}
auto e() const { return end(r); }
public:
explicit dropped(R&& r, Z n) : r(forward<R>(r)), n(max<Z>(n, 0)) { assert(0 <= n); }
VIEW_END(max(sz(r), n) - n)
TC(R) dropped(R&&, Z) -> dropped<R>;
TC(R, class F)
VIEW(dropped_while, R, F)
R r;
[[no_unique_address]] F f;
auto b() const { return find_if_not(begin(r), end(r), ref(f)); }
auto e() const { return end(r); }
public:
explicit dropped_while(R&& r, F f) : r(forward<R>(r)), f(move(f)) {}
VIEW_END()
TC(R, class F) dropped_while(R&&, F) -> dropped_while<R, F>;
TC(R)
VIEW(joined, R)
using IR = range_ref<R>;
static_assert(is_convertible_v<range_cat<R>, FIT> && is_convertible_v<range_cat<IR>, FIT>);
struct iter : iter_base<iter, common_type<range_cat<R>, range_cat<IR>, FIT>, range_ref<IR>> {
joined const* p;
iter_t<R> o;
iter_t<IR> i;
range_ref<IR> deref() const { return *i; }
bool equal(iter const& x) const { return o == x.o && i == x.i; }
void inc() & {
for (++i; i == end(*o); i = begin(*o)) {
if (++o == end(p->r)) {
i = {};
return;
}
}
}
};
R r;
iter b() const { return {{}, this, begin(r), begin(r) == end(r) ? iter_t<IR>() : begin(*begin(r))}; }
iter e() const { return {{}, this, end(r), {}}; }
public:
explicit joined(R&& r) : r(forward<R>(r)) {}
VIEW_END()
TC(R) joined(R&&) -> joined<R>;
TC(R)
VIEW(reversed, R)
R r;
auto b() const { return make_reverse_iterator(end(r)); }
auto e() const { return make_reverse_iterator(begin(r)); }
public:
explicit reversed(R&& r) : r(forward<R>(r)) {}
VIEW_END(sz(r))
TC(R) reversed(R&&) -> reversed<R>;
TC(R) reversed(reversed<R>&) -> reversed<reversed<R>&>;
TC(R) reversed(reversed<R> const&) -> reversed<reversed<R> const&>;
TC(R) reversed(reversed<R>&&) -> reversed<reversed<R>>;
TC(R)
VIEW(sliced, R)
static_assert(is_convertible_v<range_cat<R>, FIT>);
R r;
Z start;
Z stop;
auto b() const { return next(begin(r), start); }
auto e() const { return next(begin(r), stop); }
public:
explicit sliced(R&& r, Z start, Z stop) : r(forward<R>(r)) {
Z n = sz(this->r);
if (start < 0) { start += n; }
if (stop < 0) { stop += n; }
this->start = clamp<Z>(start, 0, n);
this->stop = clamp(stop, this->start, n);
}
VIEW_END(stop - start)
TC(R) sliced(R&&, Z, Z) -> sliced<R>;
TC(R)
VIEW(strided, R)
struct iter : iter_base<iter, range_cat<R>, range_ref<R>> {
strided const* p;
iter_t<R> i;
range_ref<R> deref() const { return *i; }
bool equal(iter const& x) const { return i == x.i; }
void inc() & {
if constexpr (is_convertible_v<range_cat<R>, RAIT>) {
i += min(p->s, Z(end(p->r) - i));
} else {
for (Z _ = p->s; _-- && i != end(p->r);) { ++i; }
}
}
void dec() & {
if (i == end(p->r)) {
Z n = sz(p->r);
std::advance(i, (n - 1) / p->s * p->s - n);
} else {
std::advance(i, -p->s);
}
}
void advance(Z n) & {
if (n < 0) {
dec();
++n;
}
i += min(p->s * n, Z(end(p->r) - i));
}
Z dist_to(iter const& x) const {
Z d = Z(x.i - i);
return d < 0 ? div_floor(d, p->s) : div_ceil(d, p->s);
}
};
R r;
Z s;
iter b() const { return {{}, this, begin(r)}; }
iter e() const { return {{}, this, end(r)}; }
public:
explicit strided(R&& r, Z s) : r(forward<R>(r)), s(max<Z>(s, 1)) { assert(1 <= s); }
VIEW_END(div_ceil(sz(r), s))
TC(R) strided(R&&, Z) -> strided<R>;
TC(R, class T, class Op)
VIEW(scanned, R, T, Op)
static_assert(is_convertible_v<range_cat<R>, FIT>);
struct iter : iter_base<iter, common_type_t<range_cat<R>, FIT>, T> {
scanned const* p;
T v;
iter_t<R> i;
T deref() const { return v; }
bool equal(iter const& x) const { return i == x.i && p == x.p; }
void inc() & {
if (i == end(p->r)) {
p = nullptr;
} else {
v = invoke(p->op, move(v), *i);
++i;
}
}
};
R r;
T init;
[[no_unique_address]] Op op;
iter b() const { return {{}, this, init, begin(r)}; }
iter e() const { return {{}, nullptr, {}, end(r)}; }
public:
explicit scanned(R&& r, T init, Op op) : r(forward<R>(r)), init(move(init)), op(move(op)) {}
VIEW_END(sz(r) + 1)
TC(R, class T, class Op) scanned(R&&, T, Op) -> scanned<R, T, Op>;
TC(R)
VIEW(sampled, R)
struct iter : iter_base<iter, common_type_t<range_cat<R>, IIT>, range_ref<R>> {
iter_t<R> i;
Z rest;
Z n;
range_ref<R> deref() const { return *i; }
bool equal(iter const& x) const { return i == x.i; }
void skip() & {
while (rest && n <= rand<Z>(0, --rest)) { ++i; }
--n;
}
void inc() & {
++i;
skip();
}
};
R r;
Z n;
iter b() const {
iter ret{{}, begin(r), sz(r), n};
ret.skip();
return ret;
}
iter e() const { return {{}, end(r), 0, 0}; }
public:
explicit sampled(R&& r, Z n) : r(forward<R>(r)), n(clamp<Z>(n, 0, sz(this->r))) { assert(0 <= n); }
VIEW_END(min(n, sz(r)))
TC(R) sampled(R&&, Z) -> sampled<R>;
TC(D) class view_base {
D const& derived() const { return static_cast<D const&>(*this); } // namespace r7h
public:
auto begin() const { return derived().b(); }
auto end() const { return derived().e(); }
bool empty() const { return begin() == end(); }
explicit operator bool() const { return begin() != end(); }
Z size() const { return Z(end() - begin()); }
decltype(auto) front() const { return *begin(); }
decltype(auto) back() const { return *prev(end()); }
decltype(auto) operator[](Z n) const { return begin()[n]; }
#define WRAP(SIG, CLS, ...) \
SIG const& { return CLS(derived() __VA_OPT__(,) __VA_ARGS__); } \
SIG && { return CLS(static_cast<D&&>(*this) __VA_OPT__(,) __VA_ARGS__); }
WRAP(TC(F) auto filter(F f), filtered, move(f))
WRAP(TC(F) auto map(F f), mapped, move(f))
WRAP(template <int N> auto elements(), mapped, LIFT(get<N>))
WRAP(auto keys(), mapped, LIFT(get<0>))
WRAP(auto values(), mapped, LIFT(get<1>))
WRAP(auto take(Z n), taken, n)
WRAP(TC(F) auto take_while(F f), taken_while, move(f))
WRAP(auto drop(Z n), dropped, n)
WRAP(TC(F) auto drop_while(F f), dropped_while, move(f))
WRAP(auto join(), joined)
WRAP(auto rev(), reversed)
WRAP(auto slice(Z l, Z r), sliced, l, r)
WRAP(auto stride(Z s), strided, s)
WRAP(TC(T, class Op = plus<>) auto scan(T init, Op op = {}), scanned, move(init), move(op))
WRAP(auto sample(Z n), sampled, n)
#undef WRAP
#define WRAP(SIG, FN, ...) \
SIG const { \
using Res = decltype(std::FN(begin(), end() __VA_OPT__(,) __VA_ARGS__)); \
if constexpr (is_void_v<Res>) { \
std::FN(begin(), end() __VA_OPT__(,) __VA_ARGS__); \
return derived(); \
} else { \
auto res = std::FN(begin(), end() __VA_OPT__(,) __VA_ARGS__); \
if constexpr (is_same_v<decltype(res), iter_t<D>>) { \
return Z(distance(begin(), move(res))); \
} else { \
return res; \
} \
} \
}
WRAP(TC(F) bool all_of(F f), all_of, ref(f))
WRAP(TC(F) bool any_of(F f), any_of, ref(f))
WRAP(TC(F) Z count(F f), count_if, ref(f))
WRAP(TC(F) Z find(F f), find_if, ref(f))
WRAP(TC(F) Z adjacent_find(F f), adjacent_find, ref(f))
WRAP(TC(F) Z remove(F f), remove_if, ref(f))
WRAP(D const& reverse(), reverse)
WRAP(D const& shuffle(), shuffle, mt)
WRAP(TC(C = equal_to<>) Z unique(C comp = {}), unique, ref(comp))
WRAP(TC(F) bool is_partitioned(F f), is_partitioned, ref(f))
WRAP(TC(F) Z partition(F f), partition, ref(f))
WRAP(TC(F) Z stable_partition(F f), stable_partition, ref(f))
WRAP(TC(F) Z partition_point(F f), partition_point, ref(f))
WRAP(TC(C = less<>) bool is_sorted(C comp = {}), is_sorted, ref(comp))
WRAP(TC(C = less<>) Z is_sorted_until(C comp = {}), is_sorted_until, ref(comp))
WRAP(TC(C = less<>) D const& sort(C comp = {}), sort, ref(comp))
WRAP(TC(C = less<>) D const& stable_sort(C comp = {}), stable_sort, ref(comp))
WRAP(TC(T, class C = less<>) Z lower_bound(T const& val, C comp = {}), lower_bound, val, ref(comp))
WRAP(TC(T, class C = less<>) Z upper_bound(T const& val, C comp = {}), upper_bound, val, ref(comp))
WRAP(TC(T) bool binary_search(T const& val), binary_search, val)
WRAP(Z min_element(), min_element)
WRAP(Z max_element(), max_element)
WRAP(bool next_permutation(), next_permutation)
WRAP(bool prev_permutation(), prev_permutation)
WRAP(TC(T, class Op = plus<>) T fold(T init, Op op = {}), accumulate, move(init), ref(op))
#undef WRAP
TC(F) D const& each(F f) const {
for (auto&& e : derived()) {
if constexpr (is_invocable_v<F&, decltype(e)>) {
invoke(f, e);
} else {
invoke(f);
}
}
return derived();
}
TC(F) auto max_right(F f) const { return *prev(std::partition_point(next(begin()), end(), ref(f))); }
TC(F) auto min_left(F f) const { return *std::partition_point(begin(), prev(end()), not_fn(ref(f))); }
TC(Op = plus<>)
auto fold1(Op op = {}) const { return accumulate(next(begin()), end(), front(), ref(op)); }
template <TC(...) class C = vector>
auto to() const {
return C(begin(), end());
}
auto to_vla(bool reverse = false) const {
vla<decay_t<range_ref<D>>> ret(derived().size());
if (reverse) {
copy(begin(), end(), make_reverse_iterator(ret.end()));
} else {
copy(begin(), end(), ret.begin());
}
return ret;
}
};
TC(D1, class D2) bool operator==(view_base<D1> const& x, view_base<D2> const& y) {
return equal(begin(x), end(x), begin(y), end(y));
}
TC(D1, class D2) bool operator<(view_base<D1> const& x, view_base<D2> const& y) {
return lexicographical_compare(begin(x), end(x), begin(y), end(y));
}
TC(R)
VIEW(all, R)
R r;
auto b() const { return begin(r); }
auto e() const { return end(r); }
public:
explicit all(R&& r) : r(forward<R>(r)) {}
VIEW_END(sz(r))
TC(R) all(R&&) -> all<R>;
TC(T) all(initializer_list<T>) -> all<initializer_list<T>>;
TC(I)
VIEW(range, I)
I first;
I last;
I b() const { return first; }
I e() const { return last; }
public:
explicit range(I first, I last) : first(move(first)), last(move(last)) {}
VIEW_END()
TC(T) auto rep(T l, T r) { return range(int_iter(min(l, r)), int_iter(r)); }
TC(T) auto rep(T n) { return rep<T>(0, n); }
TC(T) auto rep1(T l, T r) { return rep(l, r + 1); }
TC(T) auto rep1(T n) { return rep1<T>(1, n); }
TC(G)
VIEW(generation, G)
using T = decay_t<invoke_result_t<G const&>>;
struct iter : iter_base<iter, IIT, T> {
generation const* p;
T v;
T deref() const { return v; }
bool equal(iter const& x) const { return p == x.p; }
void inc() & { v = invoke(p->gen); }
};
[[no_unique_address]] G gen;
iter b() const { return {{}, this, invoke(gen)}; }
iter e() const { return {{}, nullptr, {}}; }
public:
explicit generation(G gen) : gen(move(gen)) {}
VIEW_END(numeric_limits<Z>::max())
TC(T) auto repeat(T val) {
return generation([val = move(val)] { return val; });
}
TC(T) auto rand_view(T a, T b) {
return generation([a, b] { return rand(a, b); });
}
TC(T, class F)
VIEW(iteration, T, F)
struct iter : iter_base<iter, FIT, T> {
iteration const* p;
T v;
T deref() const { return v; }
bool equal(iter const& x) const { return p == x.p; }
void inc() & { v = invoke(p->f, move(v)); }
};
T init;
[[no_unique_address]] F f;
iter b() const { return {{}, this, init}; }
iter e() const { return {{}, nullptr, {}}; }
public:
explicit iteration(T init, F f) : init(move(init)), f(move(f)) {}
VIEW_END(numeric_limits<Z>::max())
#undef TC
#undef Z
#undef IIT
#undef FIT
#undef BIT
#undef RAIT
#undef VIEW
#undef VIEW_END
} // namespace r7h
int main() { r7h::rep(MULTI_CASES ? r7h::input() : 1).each(r7h::main); }
void r7h::main(int) {
#define let auto const
rep(input()).each(LAMBDA(print("Long")));
println();
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0