結果

問題 No.1848 Long Prefixes
ユーザー nok0nok0
提出日時 2022-02-18 22:31:32
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 36,875 bytes
コンパイル時間 3,129 ms
コンパイル使用メモリ 239,628 KB
実行使用メモリ 19,800 KB
最終ジャッジ日時 2024-06-29 09:19:28
合計ジャッジ時間 6,479 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 WA -
testcase_01 WA -
testcase_02 WA -
testcase_03 WA -
testcase_04 WA -
testcase_05 WA -
testcase_06 WA -
testcase_07 WA -
testcase_08 WA -
testcase_09 WA -
testcase_10 WA -
testcase_11 WA -
testcase_12 WA -
testcase_13 WA -
testcase_14 WA -
testcase_15 WA -
testcase_16 WA -
testcase_17 WA -
testcase_18 WA -
testcase_19 WA -
testcase_20 AC 2 ms
6,944 KB
testcase_21 AC 2 ms
6,940 KB
testcase_22 AC 2 ms
6,940 KB
testcase_23 AC 2 ms
6,944 KB
testcase_24 WA -
testcase_25 WA -
testcase_26 AC 2 ms
6,940 KB
testcase_27 AC 2 ms
6,940 KB
testcase_28 AC 2 ms
6,940 KB
testcase_29 AC 2 ms
6,944 KB
testcase_30 AC 2 ms
6,944 KB
testcase_31 AC 2 ms
6,940 KB
testcase_32 AC 2 ms
6,940 KB
testcase_33 WA -
testcase_34 WA -
testcase_35 WA -
testcase_36 WA -
testcase_37 WA -
testcase_38 WA -
testcase_39 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 1 "a.cpp"
/**
 *	author: nok0
 *	created: 2022.02.18 22:18:10
**/
#line 1 "/Users/nok0/Documents/Programming/nok0/atcoder/string.hpp"



#include <algorithm>
#include <cassert>
#include <numeric>
#include <string>
#include <vector>

namespace atcoder {

namespace internal {

std::vector<int> sa_naive(const std::vector<int>& s) {
    int n = int(s.size());
    std::vector<int> sa(n);
    std::iota(sa.begin(), sa.end(), 0);
    std::sort(sa.begin(), sa.end(), [&](int l, int r) {
        if (l == r) return false;
        while (l < n && r < n) {
            if (s[l] != s[r]) return s[l] < s[r];
            l++;
            r++;
        }
        return l == n;
    });
    return sa;
}

std::vector<int> sa_doubling(const std::vector<int>& s) {
    int n = int(s.size());
    std::vector<int> sa(n), rnk = s, tmp(n);
    std::iota(sa.begin(), sa.end(), 0);
    for (int k = 1; k < n; k *= 2) {
        auto cmp = [&](int x, int y) {
            if (rnk[x] != rnk[y]) return rnk[x] < rnk[y];
            int rx = x + k < n ? rnk[x + k] : -1;
            int ry = y + k < n ? rnk[y + k] : -1;
            return rx < ry;
        };
        std::sort(sa.begin(), sa.end(), cmp);
        tmp[sa[0]] = 0;
        for (int i = 1; i < n; i++) {
            tmp[sa[i]] = tmp[sa[i - 1]] + (cmp(sa[i - 1], sa[i]) ? 1 : 0);
        }
        std::swap(tmp, rnk);
    }
    return sa;
}

// SA-IS, linear-time suffix array construction
// Reference:
// G. Nong, S. Zhang, and W. H. Chan,
// Two Efficient Algorithms for Linear Time Suffix Array Construction
template <int THRESHOLD_NAIVE = 10, int THRESHOLD_DOUBLING = 40>
std::vector<int> sa_is(const std::vector<int>& s, int upper) {
    int n = int(s.size());
    if (n == 0) return {};
    if (n == 1) return {0};
    if (n == 2) {
        if (s[0] < s[1]) {
            return {0, 1};
        } else {
            return {1, 0};
        }
    }
    if (n < THRESHOLD_NAIVE) {
        return sa_naive(s);
    }
    if (n < THRESHOLD_DOUBLING) {
        return sa_doubling(s);
    }

    std::vector<int> sa(n);
    std::vector<bool> ls(n);
    for (int i = n - 2; i >= 0; i--) {
        ls[i] = (s[i] == s[i + 1]) ? ls[i + 1] : (s[i] < s[i + 1]);
    }
    std::vector<int> sum_l(upper + 1), sum_s(upper + 1);
    for (int i = 0; i < n; i++) {
        if (!ls[i]) {
            sum_s[s[i]]++;
        } else {
            sum_l[s[i] + 1]++;
        }
    }
    for (int i = 0; i <= upper; i++) {
        sum_s[i] += sum_l[i];
        if (i < upper) sum_l[i + 1] += sum_s[i];
    }

    auto induce = [&](const std::vector<int>& lms) {
        std::fill(sa.begin(), sa.end(), -1);
        std::vector<int> buf(upper + 1);
        std::copy(sum_s.begin(), sum_s.end(), buf.begin());
        for (auto d : lms) {
            if (d == n) continue;
            sa[buf[s[d]]++] = d;
        }
        std::copy(sum_l.begin(), sum_l.end(), buf.begin());
        sa[buf[s[n - 1]]++] = n - 1;
        for (int i = 0; i < n; i++) {
            int v = sa[i];
            if (v >= 1 && !ls[v - 1]) {
                sa[buf[s[v - 1]]++] = v - 1;
            }
        }
        std::copy(sum_l.begin(), sum_l.end(), buf.begin());
        for (int i = n - 1; i >= 0; i--) {
            int v = sa[i];
            if (v >= 1 && ls[v - 1]) {
                sa[--buf[s[v - 1] + 1]] = v - 1;
            }
        }
    };

    std::vector<int> lms_map(n + 1, -1);
    int m = 0;
    for (int i = 1; i < n; i++) {
        if (!ls[i - 1] && ls[i]) {
            lms_map[i] = m++;
        }
    }
    std::vector<int> lms;
    lms.reserve(m);
    for (int i = 1; i < n; i++) {
        if (!ls[i - 1] && ls[i]) {
            lms.push_back(i);
        }
    }

    induce(lms);

    if (m) {
        std::vector<int> sorted_lms;
        sorted_lms.reserve(m);
        for (int v : sa) {
            if (lms_map[v] != -1) sorted_lms.push_back(v);
        }
        std::vector<int> rec_s(m);
        int rec_upper = 0;
        rec_s[lms_map[sorted_lms[0]]] = 0;
        for (int i = 1; i < m; i++) {
            int l = sorted_lms[i - 1], r = sorted_lms[i];
            int end_l = (lms_map[l] + 1 < m) ? lms[lms_map[l] + 1] : n;
            int end_r = (lms_map[r] + 1 < m) ? lms[lms_map[r] + 1] : n;
            bool same = true;
            if (end_l - l != end_r - r) {
                same = false;
            } else {
                while (l < end_l) {
                    if (s[l] != s[r]) {
                        break;
                    }
                    l++;
                    r++;
                }
                if (l == n || s[l] != s[r]) same = false;
            }
            if (!same) rec_upper++;
            rec_s[lms_map[sorted_lms[i]]] = rec_upper;
        }

        auto rec_sa =
            sa_is<THRESHOLD_NAIVE, THRESHOLD_DOUBLING>(rec_s, rec_upper);

        for (int i = 0; i < m; i++) {
            sorted_lms[i] = lms[rec_sa[i]];
        }
        induce(sorted_lms);
    }
    return sa;
}

}  // namespace internal

std::vector<int> suffix_array(const std::vector<int>& s, int upper) {
    assert(0 <= upper);
    for (int d : s) {
        assert(0 <= d && d <= upper);
    }
    auto sa = internal::sa_is(s, upper);
    return sa;
}

template <class T> std::vector<int> suffix_array(const std::vector<T>& s) {
    int n = int(s.size());
    std::vector<int> idx(n);
    iota(idx.begin(), idx.end(), 0);
    sort(idx.begin(), idx.end(), [&](int l, int r) { return s[l] < s[r]; });
    std::vector<int> s2(n);
    int now = 0;
    for (int i = 0; i < n; i++) {
        if (i && s[idx[i - 1]] != s[idx[i]]) now++;
        s2[idx[i]] = now;
    }
    return internal::sa_is(s2, now);
}

std::vector<int> suffix_array(const std::string& s) {
    int n = int(s.size());
    std::vector<int> s2(n);
    for (int i = 0; i < n; i++) {
        s2[i] = s[i];
    }
    return internal::sa_is(s2, 255);
}

// Reference:
// T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park,
// Linear-Time Longest-Common-Prefix Computation in Suffix Arrays and Its
// Applications
template <class T>
std::vector<int> lcp_array(const std::vector<T>& s,
                           const std::vector<int>& sa) {
    int n = int(s.size());
    assert(n >= 1);
    std::vector<int> rnk(n);
    for (int i = 0; i < n; i++) {
        rnk[sa[i]] = i;
    }
    std::vector<int> lcp(n - 1);
    int h = 0;
    for (int i = 0; i < n; i++) {
        if (h > 0) h--;
        if (rnk[i] == 0) continue;
        int j = sa[rnk[i] - 1];
        for (; j + h < n && i + h < n; h++) {
            if (s[j + h] != s[i + h]) break;
        }
        lcp[rnk[i] - 1] = h;
    }
    return lcp;
}

std::vector<int> lcp_array(const std::string& s, const std::vector<int>& sa) {
    int n = int(s.size());
    std::vector<int> s2(n);
    for (int i = 0; i < n; i++) {
        s2[i] = s[i];
    }
    return lcp_array(s2, sa);
}

// Reference:
// D. Gusfield,
// Algorithms on Strings, Trees, and Sequences: Computer Science and
// Computational Biology
template <class T> std::vector<int> z_algorithm(const std::vector<T>& s) {
    int n = int(s.size());
    if (n == 0) return {};
    std::vector<int> z(n);
    z[0] = 0;
    for (int i = 1, j = 0; i < n; i++) {
        int& k = z[i];
        k = (j + z[j] <= i) ? 0 : std::min(j + z[j] - i, z[i - j]);
        while (i + k < n && s[k] == s[i + k]) k++;
        if (j + z[j] < i + z[i]) j = i;
    }
    z[0] = n;
    return z;
}

std::vector<int> z_algorithm(const std::string& s) {
    int n = int(s.size());
    std::vector<int> s2(n);
    for (int i = 0; i < n; i++) {
        s2[i] = s[i];
    }
    return z_algorithm(s2);
}

}  // namespace atcoder


#line 1 "/Users/nok0/Documents/Programming/nok0/cftemp.hpp"
#include <bits/stdc++.h>
using namespace std;

#pragma region Macros
// rep macro
#define foa(v, a) for(auto &v : a)
#define REPname(a, b, c, d, e, ...) e
#define REP(...) REPname(__VA_ARGS__, REP3, REP2, REP1, REP0)(__VA_ARGS__)
#define REP0(x) for(int i = 0; i < (x); ++i)
#define REP1(i, x) for(int i = 0; i < (x); ++i)
#define REP2(i, l, r) for(int i = (l); i < (r); ++i)
#define REP3(i, l, r, c) for(int i = (l); i < (r); i += (c))
#define REPSname(a, b, c, ...) c
#define REPS(...) REPSname(__VA_ARGS__, REPS1, REPS0)(__VA_ARGS__)
#define REPS0(x) for(int i = 1; i <= (x); ++i)
#define REPS1(i, x) for(int i = 1; i <= (x); ++i)
#define RREPname(a, b, c, d, e, ...) e
#define RREP(...) RREPname(__VA_ARGS__, RREP3, RREP2, RREP1, RREP0)(__VA_ARGS__)
#define RREP0(x) for(int i = (x)-1; i >= 0; --i)
#define RREP1(i, x) for(int i = (x)-1; i >= 0; --i)
#define RREP2(i, r, l) for(int i = (r)-1; i >= (l); --i)
#define RREP3(i, r, l, c) for(int i = (r)-1; i >= (l); i -= (c))
#define RREPSname(a, b, c, ...) c
#define RREPS(...) RREPSname(__VA_ARGS__, RREPS1, RREPS0)(__VA_ARGS__)
#define RREPS0(x) for(int i = (x); i >= 1; --i)
#define RREPS1(i, x) for(int i = (x); i >= 1; --i)

// name macro
#define pb push_back
#define eb emplace_back
#define SZ(x) ((int)(x).size())
#define all(x) (x).begin(), (x).end()
#define rall(x) (x).rbegin(), (x).rend()
#define popcnt(x) __builtin_popcountll(x)
template <class T = int>
using V = std::vector<T>;
template <class T = int>
using VV = std::vector<std::vector<T>>;
template <class T>
using pqup = std::priority_queue<T, std::vector<T>, std::greater<T>>;
using ll = long long;
using ld = long double;
using int128 = __int128_t;
using pii = std::pair<int, int>;
using pll = std::pair<long long, long long>;

// input macro
template <class T, class U>
std::istream &operator>>(std::istream &is, std::pair<T, U> &p) {
	is >> p.first >> p.second;
	return is;
}
template <class T>
std::istream &operator>>(std::istream &is, std::vector<T> &v) {
	for(T &i : v) is >> i;
	return is;
}
std::istream &operator>>(std::istream &is, __int128_t &a) {
	std::string s;
	is >> s;
	__int128_t ret = 0;
	for(int i = 0; i < s.length(); i++)
		if('0' <= s[i] and s[i] <= '9')
			ret = 10 * ret + s[i] - '0';
	a = ret * (s[0] == '-' ? -1 : 1);
	return is;
}
namespace scanner {
void scan(int &a) { std::cin >> a; }
void scan(long long &a) { std::cin >> a; }
void scan(std::string &a) { std::cin >> a; }
void scan(char &a) { std::cin >> a; }
void scan(char a[]) { std::scanf("%s", a); }
void scan(double &a) { std::cin >> a; }
void scan(long double &a) { std::cin >> a; }
template <class T, class U>
void scan(std::pair<T, U> &p) { std::cin >> p; }
template <class T>
void scan(std::vector<T> &a) { std::cin >> a; }
void INPUT() {}
template <class Head, class... Tail>
void INPUT(Head &head, Tail &...tail) {
	scan(head);
	INPUT(tail...);
}
}  // namespace scanner
#define VEC(type, name, size)     \
	std::vector<type> name(size); \
	scanner::INPUT(name)
#define VVEC(type, name, h, w)                                    \
	std::vector<std::vector<type>> name(h, std::vector<type>(w)); \
	scanner::INPUT(name)
#define INT(...)     \
	int __VA_ARGS__; \
	scanner::INPUT(__VA_ARGS__)
#define LL(...)            \
	long long __VA_ARGS__; \
	scanner::INPUT(__VA_ARGS__)
#define STR(...)             \
	std::string __VA_ARGS__; \
	scanner::INPUT(__VA_ARGS__)
#define CHAR(...)     \
	char __VA_ARGS__; \
	scanner::INPUT(__VA_ARGS__)
#define DOUBLE(...)     \
	double __VA_ARGS__; \
	scanner::INPUT(__VA_ARGS__)
#define LD(...)              \
	long double __VA_ARGS__; \
	scanner::INPUT(__VA_ARGS__)

// output-macro
template <class T, class U>
std::ostream &operator<<(std::ostream &os, const std::pair<T, U> &p) {
	os << p.first << " " << p.second;
	return os;
}
template <class T>
std::ostream &operator<<(std::ostream &os, const std::vector<T> &a) {
	for(int i = 0; i < int(a.size()); ++i) {
		if(i) os << " ";
		os << a[i];
	}
	return os;
}
std::ostream &operator<<(std::ostream &dest, __int128_t &value) {
	std::ostream::sentry s(dest);
	if(s) {
		__uint128_t tmp = value < 0 ? -value : value;
		char buffer[128];
		char *d = std::end(buffer);
		do {
			--d;
			*d = "0123456789"[tmp % 10];
			tmp /= 10;
		} while(tmp != 0);
		if(value < 0) {
			--d;
			*d = '-';
		}
		int len = std::end(buffer) - d;
		if(dest.rdbuf()->sputn(d, len) != len) {
			dest.setstate(std::ios_base::badbit);
		}
	}
	return dest;
}
template <class T>
void print(const T a) { std::cout << a << '\n'; }
template <class Head, class... Tail>
void print(Head H, Tail... T) {
	std::cout << H << ' ';
	print(T...);
}
template <class T>
void printel(const T a) { std::cout << a << '\n'; }
template <class T>
void printel(const std::vector<T> &a) {
	for(const auto &v : a)
		std::cout << v << '\n';
}
template <class Head, class... Tail>
void printel(Head H, Tail... T) {
	std::cout << H << '\n';
	printel(T...);
}
void Yes(const bool b = true) { std::cout << (b ? "Yes\n" : "No\n"); }
void No() { std::cout << "No\n"; }
void YES(const bool b = true) { std::cout << (b ? "YES\n" : "NO\n"); }
void NO() { std::cout << "NO\n"; }
void err(const bool b = true) {
	if(b) {
		std::cout << "-1\n", exit(0);
	}
}

//debug macro
namespace debugger {
template <class T>
void view(const std::vector<T> &a) {
	std::cerr << "{ ";
	for(const auto &v : a) {
		std::cerr << v << ", ";
	}
	std::cerr << "\b\b }";
}
template <class T>
void view(const std::vector<std::vector<T>> &a) {
	std::cerr << "{\n";
	for(const auto &v : a) {
		std::cerr << "\t";
		view(v);
		std::cerr << "\n";
	}
	std::cerr << "}";
}
template <class T, class U>
void view(const std::vector<std::pair<T, U>> &a) {
	std::cerr << "{\n";
	for(const auto &p : a) std::cerr << "\t(" << p.first << ", " << p.second << ")\n";
	std::cerr << "}";
}
template <class T, class U>
void view(const std::map<T, U> &m) {
	std::cerr << "{\n";
	for(const auto &p : m) std::cerr << "\t[" << p.first << "] : " << p.second << "\n";
	std::cerr << "}";
}
template <class T, class U>
void view(const std::pair<T, U> &p) { std::cerr << "(" << p.first << ", " << p.second << ")"; }
template <class T>
void view(const std::set<T> &s) {
	std::cerr << "{ ";
	for(auto &v : s) {
		view(v);
		std::cerr << ", ";
	}
	std::cerr << "\b\b }";
}

template <class T>
void view(const T &e) { std::cerr << e; }
}  // namespace debugger
#ifdef LOCAL
void debug_out() {}
template <typename Head, typename... Tail>
void debug_out(Head H, Tail... T) {
	debugger::view(H);
	std::cerr << ", ";
	debug_out(T...);
}
#define debug(...)                                                \
	do {                                                          \
		std::cerr << __LINE__ << " [" << #__VA_ARGS__ << "] : ["; \
		debug_out(__VA_ARGS__);                                   \
		std::cerr << "\b\b]\n";                                   \
	} while(false)
#else
#define debug(...) (void(0))
#endif

// vector macro
template <class T>
int lb(const std::vector<T> &a, const T x) { return std::distance((a).begin(), std::lower_bound((a).begin(), (a).end(), (x))); }
template <class T>
int ub(const std::vector<T> &a, const T x) { return std::distance((a).begin(), std::upper_bound((a).begin(), (a).end(), (x))); }
template <class T>
void UNIQUE(std::vector<T> &a) {
	std::sort(a.begin(), a.end());
	a.erase(std::unique(a.begin(), a.end()), a.end());
}
template <class T>
std::vector<T> press(std::vector<T> &a) {
	auto res = a;
	UNIQUE(res);
	for(auto &v : a)
		v = lb(res, v);
	return res;
}
#define SORTname(a, b, c, ...) c
#define SORT(...) SORTname(__VA_ARGS__, SORT1, SORT0, ...)(__VA_ARGS__)
#define SORT0(a) std::sort((a).begin(), (a).end())
#define SORT1(a, c) std::sort((a).begin(), (a).end(), [](const auto x, const auto y) { return x c y; })
template <class T>
void ADD(std::vector<T> &a, const T x = 1) {
	for(auto &v : a) v += x;
}
template <class T>
void SUB(std::vector<T> &a, const T x = 1) {
	for(auto &v : a) v -= x;
}
std::vector<std::pair<char, int>> rle(const string &s) {
	int n = s.size();
	std::vector<std::pair<char, int>> ret;
	for(int l = 0; l < n;) {
		int r = l + 1;
		for(; r < n and s[l] == s[r]; r++) {}
		ret.emplace_back(s[l], r - l);
		l = r;
	}
	return ret;
}
template <class T>
std::vector<std::pair<T, int>> rle(const std::vector<T> &v) {
	int n = v.size();
	std::vector<std::pair<T, int>> ret;
	for(int l = 0; l < n;) {
		int r = l + 1;
		for(; r < n and v[l] == v[r]; r++) {}
		ret.emplace_back(v[l], r - l);
		l = r;
	}
	return ret;
}
std::vector<int> iota(int n) {
	std::vector<int> p(n);
	std::iota(p.begin(), p.end(), 0);
	return p;
}
template <class T>
struct cum_vector {
public:
	cum_vector() = default;
	template <class U>
	cum_vector(const std::vector<U> &vec) : cum((int)vec.size() + 1) {
		for(int i = 0; i < (int)vec.size(); i++)
			cum[i + 1] = cum[i] + vec[i];
	}
	T prod(int l, int r) {
		return cum[r] - cum[l];
	}

private:
	std::vector<T> cum;
};

// math macro
template <class T, class U>
inline bool chmin(T &a, const U &b) { return a > b ? a = b, true : false; }
template <class T, class U>
inline bool chmax(T &a, const U &b) { return a < b ? a = b, true : false; }
template <class T>
T divup(T x, T y) { return (x + y - 1) / y; }
template <class T>
T POW(T a, long long n) {
	T ret = 1;
	while(n) {
		if(n & 1) ret *= a;
		a *= a;
		n >>= 1;
	}
	return ret;
}
// modpow
long long POW(long long a, long long n, const int mod) {
	long long ret = 1;
	a = (a % mod + mod) % mod;
	while(n) {
		if(n & 1) (ret *= a) %= mod;
		(a *= a) %= mod;
		n >>= 1;
	}
	return ret;
}
template <class T, class F>
T bin_search(T ok, T ng, const F &f) {
	while(abs(ok - ng) > 1) {
		T mid = (ok + ng) >> 1;
		(f(mid) ? ok : ng) = mid;
	}
	return ok;
}
template <class T, class F>
T bin_search(T ok, T ng, const F &f, int loop) {
	for(int i = 0; i < loop; i++) {
		T mid = (ok + ng) / 2;
		(f(mid) ? ok : ng) = mid;
	}
	return ok;
}

// others
struct fast_io {
	fast_io() {
		ios::sync_with_stdio(false);
		cin.tie(nullptr);
		cout << fixed << setprecision(15);
	}
} fast_io_;
const int inf = 1e9;
const ll INF = 1e18;
#pragma endregion

void main_();

int main() {
	main_();
	return 0;
}
#line 1 "/Users/nok0/Documents/Programming/nok0/atcoder/modint.hpp"



#line 6 "/Users/nok0/Documents/Programming/nok0/atcoder/modint.hpp"
#include <type_traits>

#ifdef _MSC_VER
#include <intrin.h>
#endif

#line 1 "/Users/nok0/Documents/Programming/nok0/atcoder/internal_math.hpp"



#line 5 "/Users/nok0/Documents/Programming/nok0/atcoder/internal_math.hpp"

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}

// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
    unsigned int _m;
    unsigned long long im;

    // @param m `1 <= m < 2^31`
    explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

    // @return m
    unsigned int umod() const { return _m; }

    // @param a `0 <= a < m`
    // @param b `0 <= b < m`
    // @return `a * b % m`
    unsigned int mul(unsigned int a, unsigned int b) const {
        // [1] m = 1
        // a = b = im = 0, so okay

        // [2] m >= 2
        // im = ceil(2^64 / m)
        // -> im * m = 2^64 + r (0 <= r < m)
        // let z = a*b = c*m + d (0 <= c, d < m)
        // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
        // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
        // ((ab * im) >> 64) == c or c + 1
        unsigned long long z = a;
        z *= b;
#ifdef _MSC_VER
        unsigned long long x;
        _umul128(z, im, &x);
#else
        unsigned long long x =
            (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
        unsigned int v = (unsigned int)(z - x * _m);
        if (_m <= v) v += _m;
        return v;
    }
};

// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}

// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    constexpr long long bases[3] = {2, 7, 61};
    for (long long a : bases) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);

// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};

    // Contracts:
    // [1] s - m0 * a = 0 (mod b)
    // [2] t - m1 * a = 0 (mod b)
    // [3] s * |m1| + t * |m0| <= b
    long long s = b, t = a;
    long long m0 = 0, m1 = 1;

    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b

        // [3]:
        // (s - t * u) * |m1| + t * |m0 - m1 * u|
        // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
        // = s * |m1| + t * |m0| <= b

        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    // by [3]: |m0| <= b/g
    // by g != b: |m0| < b/g
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

// @param n `n < 2^32`
// @param m `1 <= m < 2^32`
// @return sum_{i=0}^{n-1} floor((ai + b) / m) (mod 2^64)
unsigned long long floor_sum_unsigned(unsigned long long n,
                                      unsigned long long m,
                                      unsigned long long a,
                                      unsigned long long b) {
    unsigned long long ans = 0;
    while (true) {
        if (a >= m) {
            ans += n * (n - 1) / 2 * (a / m);
            a %= m;
        }
        if (b >= m) {
            ans += n * (b / m);
            b %= m;
        }

        unsigned long long y_max = a * n + b;
        if (y_max < m) break;
        // y_max < m * (n + 1)
        // floor(y_max / m) <= n
        n = (unsigned long long)(y_max / m);
        b = (unsigned long long)(y_max % m);
        std::swap(m, a);
    }
    return ans;
}

}  // namespace internal

}  // namespace atcoder


#line 1 "/Users/nok0/Documents/Programming/nok0/atcoder/internal_type_traits.hpp"



#line 7 "/Users/nok0/Documents/Programming/nok0/atcoder/internal_type_traits.hpp"

namespace atcoder {

namespace internal {

#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value ||
                                  std::is_same<T, __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int128 =
    typename std::conditional<std::is_same<T, __uint128_t>::value ||
                                  std::is_same<T, unsigned __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value,
                              __uint128_t,
                              unsigned __int128>;

template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
                                                  is_signed_int128<T>::value ||
                                                  is_unsigned_int128<T>::value,
                                              std::true_type,
                                              std::false_type>::type;

template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
                                                 std::is_signed<T>::value) ||
                                                    is_signed_int128<T>::value,
                                                std::true_type,
                                                std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<(is_integral<T>::value &&
                               std::is_unsigned<T>::value) ||
                                  is_unsigned_int128<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<
    is_signed_int128<T>::value,
    make_unsigned_int128<T>,
    typename std::conditional<std::is_signed<T>::value,
                              std::make_unsigned<T>,
                              std::common_type<T>>::type>::type;

#else

template <class T> using is_integral = typename std::is_integral<T>;

template <class T>
using is_signed_int =
    typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<is_integral<T>::value &&
                                  std::is_unsigned<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
                                              std::make_unsigned<T>,
                                              std::common_type<T>>::type;

#endif

template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

template <class T> using to_unsigned_t = typename to_unsigned<T>::type;

}  // namespace internal

}  // namespace atcoder


#line 14 "/Users/nok0/Documents/Programming/nok0/atcoder/modint.hpp"

namespace atcoder {

namespace internal {

struct modint_base {};
struct static_modint_base : modint_base {};

template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;

}  // namespace internal

template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
    using mint = static_modint;

  public:
    static constexpr int mod() { return m; }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    static_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    static_modint(T v) {
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    static_modint(T v) {
        _v = (unsigned int)(v % umod());
    }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        unsigned long long z = _v;
        z *= rhs._v;
        _v = (unsigned int)(z % umod());
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        if (prime) {
            assert(_v);
            return pow(umod() - 2);
        } else {
            auto eg = internal::inv_gcd(_v, m);
            assert(eg.first == 1);
            return eg.second;
        }
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static constexpr unsigned int umod() { return m; }
    static constexpr bool prime = internal::is_prime<m>;
};

template <int id> struct dynamic_modint : internal::modint_base {
    using mint = dynamic_modint;

  public:
    static int mod() { return (int)(bt.umod()); }
    static void set_mod(int m) {
        assert(1 <= m);
        bt = internal::barrett(m);
    }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    dynamic_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        long long x = (long long)(v % (long long)(mod()));
        if (x < 0) x += mod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        _v = (unsigned int)(v % mod());
    }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v += mod() - rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        _v = bt.mul(_v, rhs._v);
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        auto eg = internal::inv_gcd(_v, mod());
        assert(eg.first == 1);
        return eg.second;
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static internal::barrett bt;
    static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt(998244353);

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;

namespace internal {

template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;

template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;

template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};

template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;

}  // namespace internal

}  // namespace atcoder


#line 4 "/Users/nok0/Documents/Programming/nok0/math/factorial.hpp"

#line 6 "/Users/nok0/Documents/Programming/nok0/math/factorial.hpp"

template <class T>
struct factorial {
public:
	static int MAX;
	static std::vector<T> fac, finv, inv;

	factorial() {}

	T binom(int n, int r) {
		if(n < r or n < 0 or r < 0) return T(0);
		assert(n < MAX);
		return fac[n] * finv[r] * finv[n - r];
	}

	T large_binom(int n, int r) {
		if(n < r or n < 0 or r < 0) return T(0);
		assert(r < MAX);
		T ret = finv[r];
		for(int i = 1; i <= r; ++i)
			ret *= (n + 1 - i);
		return ret;
	}

	static void set_size(int n = 3000000) {
		MAX = (n > 1 ? n : 1) + 1;
		if((int)fac.size() >= MAX) return;
		fac.resize(MAX);
		finv.resize(MAX);
		inv.resize(MAX);
		const int MOD = T::mod();
		fac[0] = fac[1] = 1;
		finv[0] = finv[1] = 1;
		inv[1] = 1;
		for(int i = 2; i < MAX; i++) {
			fac[i] = fac[i - 1] * i;
			inv[i] = (T)MOD - inv[MOD % i] * (MOD / i);
			finv[i] = finv[i - 1] * inv[i];
		}
	}
};
template <class T>
int factorial<T>::MAX = 0;
template <class T>
std::vector<T> factorial<T>::fac;
template <class T>
std::vector<T> factorial<T>::finv;
template <class T>
std::vector<T> factorial<T>::inv;
#line 3 "/Users/nok0/Documents/Programming/nok0/math/modint_iostream.hpp"

#line 5 "/Users/nok0/Documents/Programming/nok0/math/modint_iostream.hpp"
template <int m>
std::istream &std::operator>>(std::istream &is, atcoder::static_modint<m> &a) {
	long long v;
	is >> v;
	a = v;
	return is;
}
template <int m>
std::istream &std::operator>>(std::istream &is, atcoder::dynamic_modint<m> &a) {
	long long v;
	is >> v;
	a = v;
	return is;
}
template <int m>
std::ostream &std::operator<<(std::ostream &os, const atcoder::static_modint<m> &a) { return os << a.val(); }
template <int m>
std::ostream &std::operator<<(std::ostream &os, const atcoder::dynamic_modint<m> &a) { return os << a.val(); }
#line 8 "a.cpp"

using mint = atcoder::modint1000000007;

mint res;
void main_() {
	INT(n);
	VEC(int, a, n);
	STR(s);

	cum_vector<ll> cum(a);
	map<pii, int> mp;
	V<> b;
	{
		int now = 0;
		REP(i, n) {
			if(!mp.count(pair(s[i], a[i]))) {
				mp[pair(s[i], a[i])] = now++;
			}
			b.pb(mp[pair(s[i], a[i])]);
		}
	}
	auto z = atcoder::z_algorithm(b);
	auto range_sum = [&](int l, int r) {
		return mint(l + r - 1) * (r - l) / 2;
	};
	REP(i, n) {
		if(s[i] != s[0]) continue;
		if(a[0] > a[i]) {
			res += range_sum(1, a[i] + 1);
			//1からa[i]までの総和
		} else {
			//[1, a[0])
			res += range_sum(1, a[0] + 1);
			//a[0]
			int len = z[i];
			if(i + 1 < i + len) res += cum.prod(i + 1, i + len);
			if(i + len + 1 < n and s[i + 1] == s[i + len + 1]) {
				res += min(a[len + 1], a[i + len * 1]);
			}
			res += mint(a[0]) * (a[i] - a[0]);
		}
	}
	print(res);
}
0