結果
| 問題 |
No.421 しろくろチョコレート
|
| ユーザー |
|
| 提出日時 | 2022-02-24 13:19:35 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
RE
|
| 実行時間 | - |
| コード長 | 3,338 bytes |
| コンパイル時間 | 298 ms |
| コンパイル使用メモリ | 82,432 KB |
| 実行使用メモリ | 79,664 KB |
| 最終ジャッジ日時 | 2024-07-02 11:29:34 |
| 合計ジャッジ時間 | 7,703 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 21 WA * 11 RE * 33 |
ソースコード
#Dinic法で最大流を求める
#deque のimport が必要
#逆辺追加しなきゃいけないから、
#グラフの構成はadd_edgeで行う
#最大流は flow メソッドで
from collections import deque
class Dinic:
def __init__(self,N):
self.N = N
self.G = [[] for _ in range(N)]
self.level = None
self.progress = None
self.edge = []
def add_edge(self,fr,to,cap):
forward = [to,cap,None]
forward[2] = backward = [fr,0,forward]
self.G[fr].append(forward)
self.G[to].append(backward)
self.edge.append(forward)
def add_multi_edge(self,v1,v2,cap1,cap2):
edge1 = [v2,cap1,None]
edge1[2] = edge2 = [v1,cap2,edge1]
self.G[v1].append(edge1)
self.G[v2].append(edge2)
self.edge.append(edge1)
def get_edge(self,i):
return self.edge[i]
# i 回目に追加した辺のポインタを返す
# 0-index, 順辺のみ
def bfs(self,s,t):
self.level = level = [None] * self.N
q = deque([s])
level[s] = 0
G = self.G
while q:
v = q.popleft()
lv = level[v] + 1
for w,cap,_ in G[v]:
if cap and level[w] is None:
level[w] = lv
q.append(w)
return level[t] is not None
def dfs(self,v,t,f):
if v == t:return f
level = self.level
Gv = self.G[v]
for i in range(self.progress[v],len(Gv)):
self.progress[v] = i
w,cap,rev = e = Gv[i]
if cap and level[v] < level[w]:
d = self.dfs(w,t,min(f,cap))
if d:
e[1] -= d
rev[1] += d
return d
return 0
def flow(self,s,t,):
flow = 0
inf = 1 << 30
G = self.G
while self.bfs(s,t):
self.progress = [0] * self.N
f = inf
while f:
f = self.dfs(s,t,inf)
flow += f
return flow
def min_cut(self,s):
#最小カットを実現する頂点の分割を与える
#True なら source側
#False なら sink側
visited = [False for i in range(self.N)]
q = deque([s])
while q:
now = q.popleft()
visited[now] = True
for to,cap,_ in self.G[now]:
if cap and not visited[to]:
visited[to] = True
q.append(to)
return visited
N,M = map(int,input().split())
S = [input() for _ in range(N)]
countb = 0
countw = 0
dinic = Dinic(N * M + 2)
T = N * M + 1
def f(h,w):
return h * M + w + 1
for h in range(N):
for w in range(M):
if S[h][w] == "w":
countw += 1
dinic.add_edge(f(h,w),T,1)
elif S[h][w] == "b":
countb += 1
dinic.add_edge(0,f(h,w),1)
for i,j in [(1,0),(-1,0),(0,1),(0,-1)]:
if 0 <= h + i < N and 0 <= w + j < N:
if S[h+i][w+j] == "w":
dinic.add_edge(f(h,w),f(h+i,w+j),1)
match = dinic.flow(0,T)
countb -= match
countw -= match
num = min(countw,countb)
countb -= num
countw -= num
ans = 100 * match + 10 * num + countb + countw
print(ans)