結果

問題 No.650 行列木クエリ
ユーザー ああいいああいい
提出日時 2022-02-25 16:36:43
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 1,357 ms / 2,000 ms
コード長 9,216 bytes
コンパイル時間 152 ms
コンパイル使用メモリ 82,488 KB
実行使用メモリ 126,716 KB
最終ジャッジ日時 2024-07-03 11:06:24
合計ジャッジ時間 8,302 ms
ジャッジサーバーID
(参考情報)
judge2 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 38 ms
54,272 KB
testcase_01 AC 1,089 ms
99,076 KB
testcase_02 AC 1,254 ms
126,716 KB
testcase_03 AC 39 ms
54,656 KB
testcase_04 AC 870 ms
98,092 KB
testcase_05 AC 1,357 ms
126,168 KB
testcase_06 AC 40 ms
54,400 KB
testcase_07 AC 40 ms
54,656 KB
testcase_08 AC 962 ms
97,096 KB
testcase_09 AC 1,156 ms
124,780 KB
testcase_10 AC 38 ms
54,272 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

base = 30
#頂点は1-index,下段は0-index
class LazySegTree:

    #単位元と結合と作用をここで定義
    Xunit = ((1<<(3*base))+1)<<base
    Aunit = None

    
    def Xf(self,x,y):
         return (seki(x>>base,y>>base) << base) + (x&mask+y&mask)
    
    #Xf = max
    def Af(self,a,b):
        if b == self.Aunit:
            return a
        return b
    #AのXへの作用
    def operate(self,x,a):
        if a == self.Aunit:
            return x
        num = x & mask
        tmp = _pow(a,num)
        return (tmp<<base)+num

    def __init__(self,N):
        self.N = N
        self.X = [self.Xunit] * (N + N)
        self.A = [self.Aunit] * (N + N)
    def build(self,seq):
        for i,x in enumerate(seq,self.N):
            self.X[i] = x
        for i in range(self.N-1,0,-1):
            self.X[i] = self.Xf(self.X[i<<1],self.X[i<<1 | 1])
    def eval_at(self,i):
        return self.operate(self.X[i],self.A[i])
    def propagate_at(self,i):
        self.X[i] = self.eval_at(i)
        self.A[i<<1] = self.Af(self.A[i<<1],self.A[i])
        self.A[i<<1 | 1] = self.Af(self.A[i<<1 | 1],self.A[i])
        self.A[i] = self.Aunit
    def propagate_above(self,i):
        H = i.bit_length() - 1
        for h in range(H,0,-1):
            self.propagate_at(i >> h)
    def recalc_above(self,i):
        while i > 1:
            i >>= 1
            self.X[i] = self.Xf(self.eval_at(i << 1),self.eval_at(i << 1 | 1))
    def update(self,i,x):
        i += self.N
        self.propagate_above(i)
        self.X[i] = x
        self.A[i] = self.Aunit
        self.recalc_above(i)
    def fold(self,L = 0,R = -1):
        if R == -1:R = self.N
        L += self.N
        R += self.N
        self.propagate_above(L // (L & -L))
        self.propagate_above(R // (R & -R) -1)
        vL = self.Xunit
        vR = self.Xunit
        while L < R:
            if L & 1:
                vL = self.Xf(vL,self.eval_at(L))
                L += 1
            if R & 1:
                R -= 1
                vR = self.Xf(self.eval_at(R),vR)
            L >>= 1
            R >>= 1
        return self.Xf(vL,vR)
    def operate_range(self,L,R,x):
        #区間全体に作用させる
        L += self.N
        R += self.N
        L0 = L // (L & -L)
        R0 = R // (R & -R) - 1
        self.propagate_above(L0)
        self.propagate_above(R0)
        while L < R:
            if L & 1:
                self.A[L] = self.Af(self.A[L],x)
                L += 1
            if R & 1:
                R -= 1
                self.A[R] = self.Af(self.A[R],x)
            L >>= 1
            R >>= 1
        self.recalc_above(L0)
        self.recalc_above(R0)
    def write(self):
        print(self.X)
    def change(self,Xf,Xunit,Af,Aunit,operate):
        self.Xf = Xf
        self.Xunit = Xunit
        self.Af = Af
        self.Aunit = Aunit
        self.operate = operate


#HL分解

class HL:

    #u,vを結ぶpathへのクエリはここにでも
    #  f は区間 [l,r)に対するクエリ
    def f(self,l,r):
        pass
    def merge(self,x,y):
        return x + y


    
    def __init__(self,G,root):
        self.G = G
        self.root = root
        self.N = len(G) 
        self.size = [1] * self.N     #部分木のサイズ
        self.p = [0] * self.N        #親頂点
        self.H = [None] * self.N     #Heavy_edgeでつながる子頂点。葉ではNoneが入ってる
        self._in = [-1] * self.N     #最初に探索したときの位置
        self.out = [-1] * self.N     #部分木をでるタイミング。オイラーとはちょっと違う。
                                     #開区間  [_in[i],out[i]) がiの部分木に対応
        self.pathtop = [0] * self.N  #iの属するpathの中で最も根に近い頂点。代表にする
        self.build()
        self.build_path()
    def build(self):
        stack = [(~self.root,-1),(self.root,-1)]
        G = self.G
        size = self.size
        H = self.H
        while stack:
            now,parent = stack.pop()
            if now < 0:
                now = ~now
                _max = 0
                for v in G[now]:
                    if v == parent:continue
                    size[now] += size[v]
                    if size[v] > _max:
                        _max = size[v]
                        H[now] = v
            else:
                for v in G[now]:
                    if v == parent:continue
                    self.p[v] = now
                    stack.append((~v,now))
                    stack.append((v,now))
    def build_path(self):
        stack = [(~self.root,-1,self.root),(self.root,-1,self.root)]
        count = 0
        G = self.G
        H = self.H
        while stack:
            now,parent,top = stack.pop()
            if now >= 0:
                self._in[now] = count
                count += 1
                self.pathtop[now] = top
                h = H[now]
                if h is None:continue
                for v in G[now]:
                    if v == parent or v == h:continue
                    stack.append((~v,now,v))
                    stack.append((v,now,v))
                stack.append((~h,now,top))
                stack.append((h,now,top))
            else:
                now = ~now
                self.out[now] = count
    def lca(self,a,b):
        #最近共通先祖
        pathtop = self.pathtop
        _in = self._in
        pa = pathtop[a]
        pb = pathtop[b]
        while pa != pb:
            if _in[pa] > _in[pb]:
                a = self.p[pa]
                pa = pathtop[a]
            else:
                b = self.p[pb]
                pb = pathtop[b]
        return a if _in[a] < _in[b] else b
    def subtree_query(self,a,f = None):
        #if f is None:f = self.f
        return f(self._in[a],self.out[a])
    def subtree_array(self,a):
        return (self._in[a],self.out[a])
        #下のpath_arrayとほぼ同じ。タプルを一つだけ返す

    #f = lambda l,r:seg.fold(l,r)  とか
    #f = lambda l,r:seg.oparete_range(l,r,x) とか
    #代入して使う
    def path_query(self,a,b,f = None,merge = None):
        #if f is None:f = self.f
        #if merge is None:merge = self.merge
        pathtop = self.pathtop
        p = self.p
        _in = self._in
        pa = pathtop[a]
        pb = pathtop[b]
        ans = 0
        while pa != pb:
            if _in[pa] > _in[pb]:
                ans = merge(ans,f(_in[pa],_in[a]+1))
                a = p[pa]
                pa = pathtop[a]
            else:
                ans = merge(ans,f(_in[pb],_in[b]+1))
                b = p[pb]
                pb = pathtop[b]
        if _in[a] > _in[b]:
            a,b = b,a
        ans = merge(ans,f(_in[a],_in[b]+1))
        return ans
    
    def path_array(self,a,b):
        # a,b を結ぶpath、を分割した配列を返す。こっちのほうが便利かも
        #半開区間 [l,r) の集まりを返す
        #現状順番は適当
        #こっちのほうが早かった
        pathtop = self.pathtop
        p = self.p
        _in = self._in
        ans = []
        pa = pathtop[a]
        pb = pathtop[b]
        while pa != pb:
            if _in[pa] > _in[pb]:
                ans.append((_in[pa],_in[a]+1))
                a = p[pa]
                pa = pathtop[a]
            else:
                ans.append((_in[pb],_in[b]+1))
                b = p[pb]
                pb = pathtop[b]
        if _in[a] > _in[b]:
            a,b = b,a
        ans.append((_in[a],_in[b]+1))
        return ans


P = 10 ** 9 + 7
base = 30
unit = (1<<(3*base))+1
mask = (1 << base) - 1
def seki(x,y):
    d = x & mask
    x >>= base
    c = x & mask
    x >>= base
    b = x & mask
    a = x >> base
    h = y & mask
    y >>= base
    g = y & mask
    y >>= base
    f = y & mask
    e = y >> base
    i = (a * e + b * g) % P
    j = (a * f + b * h) % P
    k = (c * e + d * g) % P
    l = (c * f + d * h) % P
    return (i<<(3*base))+(j<<(2*base))+(k<<base)+l
def make(t):
    a,b,c,d = t
    ans = (a << (3*base)) + (b << (2*base)) + (c << base) + d
    return (ans<<base)+1
def _pow(x,n):
    tmp = unit
    while n:
        if n & 1:
            tmp = seki(tmp,x)
        x = seki(x,x)
        n >>= 1
    return tmp

import sys
rr = sys.stdin.buffer
n = int(rr.readline())
G = [[] for _ in range(n)]
edge = []
taiou = []
for _ in range(n-1):
    a,b = map(int,rr.readline().split())
    G[a].append(b)
    G[b].append(a)
    edge.append((a,b))
hl = HL(G,0)
for a,b in edge:
    if hl.p[a] == b:
        taiou.append(a)
    else:
        taiou.append(b)
seg = LazySegTree(n)
seq = [(unit<<base)+1] * n
seg.build(seq)
q = int(rr.readline())
for _ in range(q):
    s,*t = input().split()
    t = list(map(int,t))
    if s == "x":
        seg.update(hl._in[taiou[t[0]]],make(t[1:]))
    else:
        i,j = t
        
        ans = unit
        L = hl.path_array(i,j)
        u,v = L.pop()
        for l,r in L:
            ans = seki(seg.fold(l,r)>>base,ans)
        ans = seki(seg.fold(u+1,v)>>base,ans)
        d = ans & mask
        ans >>= base
        c = ans & mask
        ans >>= base
        b = ans & mask
        a = ans >> base
        print(a,b,c,d)
0