結果
問題 | No.1857 Gacha Addiction |
ユーザー | chineristAC |
提出日時 | 2022-02-25 22:07:01 |
言語 | PyPy3 (7.3.15) |
結果 |
TLE
|
実行時間 | - |
コード長 | 3,328 bytes |
コンパイル時間 | 156 ms |
コンパイル使用メモリ | 82,368 KB |
実行使用メモリ | 272,848 KB |
最終ジャッジ日時 | 2024-07-03 17:00:55 |
合計ジャッジ時間 | 24,257 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 68 ms
69,736 KB |
testcase_01 | AC | 62 ms
69,244 KB |
testcase_02 | AC | 63 ms
69,588 KB |
testcase_03 | AC | 64 ms
69,668 KB |
testcase_04 | AC | 325 ms
85,448 KB |
testcase_05 | AC | 321 ms
85,456 KB |
testcase_06 | AC | 318 ms
85,636 KB |
testcase_07 | AC | 323 ms
86,148 KB |
testcase_08 | AC | 325 ms
85,552 KB |
testcase_09 | AC | 2,809 ms
224,336 KB |
testcase_10 | AC | 2,831 ms
235,284 KB |
testcase_11 | AC | 2,811 ms
225,376 KB |
testcase_12 | AC | 2,779 ms
228,580 KB |
testcase_13 | AC | 2,794 ms
226,404 KB |
testcase_14 | TLE | - |
testcase_15 | -- | - |
testcase_16 | -- | - |
testcase_17 | -- | - |
testcase_18 | -- | - |
testcase_19 | -- | - |
testcase_20 | -- | - |
testcase_21 | -- | - |
testcase_22 | -- | - |
testcase_23 | -- | - |
testcase_24 | -- | - |
testcase_25 | -- | - |
testcase_26 | -- | - |
testcase_27 | -- | - |
testcase_28 | -- | - |
testcase_29 | -- | - |
testcase_30 | -- | - |
testcase_31 | -- | - |
testcase_32 | -- | - |
testcase_33 | -- | - |
testcase_34 | -- | - |
testcase_35 | -- | - |
testcase_36 | -- | - |
testcase_37 | -- | - |
testcase_38 | -- | - |
testcase_39 | -- | - |
testcase_40 | -- | - |
testcase_41 | -- | - |
testcase_42 | -- | - |
testcase_43 | -- | - |
testcase_44 | -- | - |
testcase_45 | -- | - |
testcase_46 | -- | - |
ソースコード
mod = 998244353 omega = pow(3,119,mod) rev_omega = pow(omega,mod-2,mod) N = 2*10**5 g1 = [1]*(N+1) # 元テーブル g2 = [1]*(N+1) #逆元テーブル inv = [1]*(N+1) #逆元テーブル計算用テーブル for i in range( 2, N + 1 ): g1[i]=( ( g1[i-1] * i ) % mod ) inv[i]=( ( -inv[mod % i] * (mod//i) ) % mod ) g2[i]=( (g2[i-1] * inv[i]) % mod ) inv[0]=0 def _ntt(f,L,reverse=False): F=[f[i] for i in range(L)] n = L.bit_length() - 1 base = omega if reverse: base = rev_omega if not n: return F size = 2**n wj = pow(base,2**22,mod) res = [0]*2**n for i in range(n,0,-1): use_omega = pow(base,2**(22+i-n),mod) res = [0]*2**n size //= 2 w = 1 for j in range(0,L//2,size): for a in range(size): res[a+j] = (F[a+2*j] + w * F[a+size+2*j]) % mod t = (w * wj) % mod res[L//2+a+j] = (F[a+2*j] + t * F[a+size+2*j]) % mod w = (w * use_omega) % mod F = res return res def ntt(f,L=0): l = len(f) if not L: L = 1<<((l-1).bit_length()) while len(f)<L: f.append(0) f=f[:L] F = _ntt(f,L) return F def intt(f,L=0): l = len(f) if not L: L = 1<<((l-1).bit_length()) while len(f)<L: f.append(0) f=f[:L] F = _ntt(f,L,reverse=True) inv = pow(L,mod-2,mod) for i in range(L): F[i] *= inv F[i] %= mod return F def convolve(_f,_g,limit=None): f = [v for v in _f] g = [v for v in _g] l = len(f)+len(g)-1 L = 1<<((l-1).bit_length()) F = ntt(f,L) G = ntt(g,L) H = [(F[i] * G[i]) % mod for i in range(L)] h = intt(H,L) if not limit: return h[:l] return h[:limit] class SegmentTree: def __init__(self, init_val, segfunc, ide_ele): n = len(init_val) self.segfunc = segfunc self.ide_ele = ide_ele self.num = 1 << (n - 1).bit_length() self.tree = [[[1,0],[1,0]] for i in range(2*self.num)] self.size = n for i in range(n): self.tree[self.num + i] = init_val[i] for i in range(self.num - 1, 0, -1): self.tree[i] = self.segfunc(self.tree[2 * i], self.tree[2 * i + 1]) import sys,random,bisect from collections import deque,defaultdict from heapq import heapify,heappop,heappush from itertools import permutations from math import e, log,gcd input = lambda :sys.stdin.readline() mi = lambda :map(int,input().split()) li = lambda :list(mi()) N,S = mi() P = li() for i in range(N): P[i] = P[i] * pow(S,mod-2,mod) % mod init = [[[0,P[i]*P[i] % mod],[1,P[i]]] for i in range(N)] def add(f,g): res = [0 for i in range(max(len(f),len(g)))] for i in range(len(f)): res[i] += f[i] res[i] %= mod for j in range(len(g)): res[j] += g[j] res[j] %= mod return res def merge(x,y): return [add(convolve(x[0],y[1],len(x[0])+len(y[1])-1),convolve(x[1],y[0],len(x[1])+len(y[0])-1)),convolve(x[1],y[1],len(x[1])+len(y[1])-1)] deq = deque(init) while len(deq) > 1: a = deq.popleft() b = deq.popleft() c = merge(a,b) deq.append(c) res = deq[0][0] ans = 0 for k in range(1,N+1): ans += g1[k+1] * res[k] % mod ans %= mod print(ans)