結果

問題 No.1853 Many Operations
ユーザー 👑 emthrmemthrm
提出日時 2022-02-26 02:50:06
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 3 ms / 2,000 ms
コード長 6,051 bytes
コンパイル時間 2,256 ms
コンパイル使用メモリ 200,080 KB
最終ジャッジ日時 2025-01-28 03:04:55
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 4
other AC * 26
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#define _USE_MATH_DEFINES
#include <bits/stdc++.h>
using namespace std;
#define FOR(i,m,n) for(int i=(m);i<(n);++i)
#define REP(i,n) FOR(i,0,n)
#define ALL(v) (v).begin(),(v).end()
using ll = long long;
constexpr int INF = 0x3f3f3f3f;
constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL;
constexpr double EPS = 1e-8;
constexpr int MOD = 998244353;
constexpr int DY4[]{1, 0, -1, 0}, DX4[]{0, -1, 0, 1};
constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1};
constexpr int DX8[]{0, -1, -1, -1, 0, 1, 1, 1};
template <typename T, typename U>
inline bool chmax(T& a, U b) { return a < b ? (a = b, true) : false; }
template <typename T, typename U>
inline bool chmin(T& a, U b) { return a > b ? (a = b, true) : false; }
struct IOSetup {
IOSetup() {
std::cin.tie(nullptr);
std::ios_base::sync_with_stdio(false);
std::cout << fixed << setprecision(20);
}
} iosetup;
template <int M>
struct MInt {
unsigned int v;
MInt() : v(0) {}
MInt(const long long x) : v(x >= 0 ? x % M : x % M + M) {}
static constexpr int get_mod() { return M; }
static void set_mod(const int divisor) { assert(divisor == M); }
static void init(const int x = 10000000) {
inv(x, true);
fact(x);
fact_inv(x);
}
static MInt inv(const int n, const bool init = false) {
// assert(0 <= n && n < M && std::__gcd(n, M) == 1);
static std::vector<MInt> inverse{0, 1};
const int prev = inverse.size();
if (n < prev) {
return inverse[n];
} else if (init) {
// "n!" and "M" must be disjoint.
inverse.resize(n + 1);
for (int i = prev; i <= n; ++i) {
inverse[i] = -inverse[M % i] * (M / i);
}
return inverse[n];
}
int u = 1, v = 0;
for (unsigned int a = n, b = M; b;) {
const unsigned int q = a / b;
std::swap(a -= q * b, b);
std::swap(u -= q * v, v);
}
return u;
}
static MInt fact(const int n) {
static std::vector<MInt> factorial{1};
const int prev = factorial.size();
if (n >= prev) {
factorial.resize(n + 1);
for (int i = prev; i <= n; ++i) {
factorial[i] = factorial[i - 1] * i;
}
}
return factorial[n];
}
static MInt fact_inv(const int n) {
static std::vector<MInt> f_inv{1};
const int prev = f_inv.size();
if (n >= prev) {
f_inv.resize(n + 1);
f_inv[n] = inv(fact(n).v);
for (int i = n; i > prev; --i) {
f_inv[i - 1] = f_inv[i] * i;
}
}
return f_inv[n];
}
static MInt nCk(const int n, const int k) {
if (n < 0 || n < k || k < 0) return 0;
return fact(n) * (n - k < k ? fact_inv(k) * fact_inv(n - k) :
fact_inv(n - k) * fact_inv(k));
}
static MInt nPk(const int n, const int k) {
return n < 0 || n < k || k < 0 ? 0 : fact(n) * fact_inv(n - k);
}
static MInt nHk(const int n, const int k) {
return n < 0 || k < 0 ? 0 : (k == 0 ? 1 : nCk(n + k - 1, k));
}
static MInt large_nCk(long long n, const int k) {
if (n < 0 || n < k || k < 0) return 0;
inv(k, true);
MInt res = 1;
for (int i = 1; i <= k; ++i) {
res *= inv(i) * n--;
}
return res;
}
MInt pow(long long exponent) const {
MInt res = 1, tmp = *this;
for (; exponent > 0; exponent >>= 1) {
if (exponent & 1) res *= tmp;
tmp *= tmp;
}
return res;
}
MInt& operator+=(const MInt& x) {
if ((v += x.v) >= M) v -= M;
return *this;
}
MInt& operator-=(const MInt& x) {
if ((v += M - x.v) >= M) v -= M;
return *this;
}
MInt& operator*=(const MInt& x) {
v = static_cast<unsigned long long>(v) * x.v % M;
return *this;
}
MInt& operator/=(const MInt& x) { return *this *= inv(x.v); }
bool operator==(const MInt& x) const { return v == x.v; }
bool operator!=(const MInt& x) const { return v != x.v; }
bool operator<(const MInt& x) const { return v < x.v; }
bool operator<=(const MInt& x) const { return v <= x.v; }
bool operator>(const MInt& x) const { return v > x.v; }
bool operator>=(const MInt& x) const { return v >= x.v; }
MInt& operator++() {
if (++v == M) v = 0;
return *this;
}
MInt operator++(int) {
const MInt res = *this;
++*this;
return res;
}
MInt& operator--() {
v = (v == 0 ? M - 1 : v - 1);
return *this;
}
MInt operator--(int) {
const MInt res = *this;
--*this;
return res;
}
MInt operator+() const { return *this; }
MInt operator-() const { return MInt(v ? M - v : 0); }
MInt operator+(const MInt& x) const { return MInt(*this) += x; }
MInt operator-(const MInt& x) const { return MInt(*this) -= x; }
MInt operator*(const MInt& x) const { return MInt(*this) *= x; }
MInt operator/(const MInt& x) const { return MInt(*this) /= x; }
friend std::ostream& operator<<(std::ostream& os, const MInt& x) {
return os << x.v;
}
friend std::istream& operator>>(std::istream& is, MInt& x) {
long long v;
is >> v;
x = MInt(v);
return is;
}
};
using ModInt = MInt<MOD>;
int main() {
map<ll, ModInt> dp_;
auto dp = [&](auto&& dp, ll n) -> ModInt {
if (n == 0) return 0;
if (dp_.count(n)) return dp_[n];
if (n == 1) return dp_[n] = 1;
dp_[n] = 0;
// N 1 2 3 4 5 6 7 8 9 A B
// o o o o o -> 1 2 3 4 5
dp_[n] += dp(dp, n / 2) + n / 2;
// N 1 2 3 4 5 6 7 8 9 A B
// x o o -> 1 2
dp_[n] += dp(dp, (n - 1) / 4) + (n - 1) / 4 * 3 + 1;
// N 1 2 3 4 5 6 7 8 9 A B
// o o o -> [1] 2 3
dp_[n] += dp(dp, (n + 1) / 4) + (n + 1) / 4 * 3;
if (n >= 3) --dp_[n];
return dp_[n];
};
ll n; cin >> n;
cout << dp(dp, n) << '\n';
return 0;
// int dp[N]{};
// fill(dp, dp + N, -1);
// dp[0] = 0;
// queue<int> que({0});
// while (!que.empty()) {
// const int a = que.front(); que.pop();
// for (int x : vector<int>{a + 1, a - 1, a * 2}) {
// if (0 <= x && x < N && dp[x] == -1) {
// dp[x] = dp[a] + 1;
// que.emplace(x);
// }
// }
// }
// FOR(i, 1, N) dp[i] += dp[i - 1];
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0