結果
問題 | No.980 Fibonacci Convolution Hard |
ユーザー | 👑 emthrm |
提出日時 | 2022-02-27 01:12:36 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 88 ms / 2,000 ms |
コード長 | 6,436 bytes |
コンパイル時間 | 2,147 ms |
コンパイル使用メモリ | 213,432 KB |
実行使用メモリ | 11,264 KB |
最終ジャッジ日時 | 2024-07-04 22:43:46 |
合計ジャッジ時間 | 7,249 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 86 ms
11,256 KB |
testcase_01 | AC | 86 ms
11,264 KB |
testcase_02 | AC | 84 ms
11,264 KB |
testcase_03 | AC | 81 ms
11,264 KB |
testcase_04 | AC | 87 ms
11,264 KB |
testcase_05 | AC | 83 ms
11,264 KB |
testcase_06 | AC | 82 ms
11,212 KB |
testcase_07 | AC | 86 ms
11,264 KB |
testcase_08 | AC | 85 ms
11,136 KB |
testcase_09 | AC | 85 ms
11,136 KB |
testcase_10 | AC | 86 ms
11,264 KB |
testcase_11 | AC | 88 ms
11,120 KB |
testcase_12 | AC | 86 ms
11,136 KB |
testcase_13 | AC | 85 ms
11,264 KB |
testcase_14 | AC | 85 ms
11,140 KB |
testcase_15 | AC | 86 ms
11,136 KB |
testcase_16 | AC | 71 ms
11,264 KB |
ソースコード
#define _USE_MATH_DEFINES #include <bits/stdc++.h> using namespace std; #define FOR(i,m,n) for(int i=(m);i<(n);++i) #define REP(i,n) FOR(i,0,n) #define ALL(v) (v).begin(),(v).end() using ll = long long; constexpr int INF = 0x3f3f3f3f; constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL; constexpr double EPS = 1e-8; constexpr int MOD = 1000000007; // constexpr int MOD = 998244353; constexpr int DY4[]{1, 0, -1, 0}, DX4[]{0, -1, 0, 1}; constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1}; constexpr int DX8[]{0, -1, -1, -1, 0, 1, 1, 1}; template <typename T, typename U> inline bool chmax(T& a, U b) { return a < b ? (a = b, true) : false; } template <typename T, typename U> inline bool chmin(T& a, U b) { return a > b ? (a = b, true) : false; } struct IOSetup { IOSetup() { std::cin.tie(nullptr); std::ios_base::sync_with_stdio(false); std::cout << fixed << setprecision(20); } } iosetup; template <int M> struct MInt { unsigned int v; MInt() : v(0) {} MInt(const long long x) : v(x >= 0 ? x % M : x % M + M) {} static constexpr int get_mod() { return M; } static void set_mod(const int divisor) { assert(divisor == M); } static void init(const int x = 10000000) { inv(x, true); fact(x); fact_inv(x); } static MInt inv(const int n, const bool init = false) { // assert(0 <= n && n < M && std::__gcd(n, M) == 1); static std::vector<MInt> inverse{0, 1}; const int prev = inverse.size(); if (n < prev) { return inverse[n]; } else if (init) { // "n!" and "M" must be disjoint. inverse.resize(n + 1); for (int i = prev; i <= n; ++i) { inverse[i] = -inverse[M % i] * (M / i); } return inverse[n]; } int u = 1, v = 0; for (unsigned int a = n, b = M; b;) { const unsigned int q = a / b; std::swap(a -= q * b, b); std::swap(u -= q * v, v); } return u; } static MInt fact(const int n) { static std::vector<MInt> factorial{1}; const int prev = factorial.size(); if (n >= prev) { factorial.resize(n + 1); for (int i = prev; i <= n; ++i) { factorial[i] = factorial[i - 1] * i; } } return factorial[n]; } static MInt fact_inv(const int n) { static std::vector<MInt> f_inv{1}; const int prev = f_inv.size(); if (n >= prev) { f_inv.resize(n + 1); f_inv[n] = inv(fact(n).v); for (int i = n; i > prev; --i) { f_inv[i - 1] = f_inv[i] * i; } } return f_inv[n]; } static MInt nCk(const int n, const int k) { if (n < 0 || n < k || k < 0) return 0; return fact(n) * (n - k < k ? fact_inv(k) * fact_inv(n - k) : fact_inv(n - k) * fact_inv(k)); } static MInt nPk(const int n, const int k) { return n < 0 || n < k || k < 0 ? 0 : fact(n) * fact_inv(n - k); } static MInt nHk(const int n, const int k) { return n < 0 || k < 0 ? 0 : (k == 0 ? 1 : nCk(n + k - 1, k)); } static MInt large_nCk(long long n, const int k) { if (n < 0 || n < k || k < 0) return 0; inv(k, true); MInt res = 1; for (int i = 1; i <= k; ++i) { res *= inv(i) * n--; } return res; } MInt pow(long long exponent) const { MInt res = 1, tmp = *this; for (; exponent > 0; exponent >>= 1) { if (exponent & 1) res *= tmp; tmp *= tmp; } return res; } MInt& operator+=(const MInt& x) { if ((v += x.v) >= M) v -= M; return *this; } MInt& operator-=(const MInt& x) { if ((v += M - x.v) >= M) v -= M; return *this; } MInt& operator*=(const MInt& x) { v = static_cast<unsigned long long>(v) * x.v % M; return *this; } MInt& operator/=(const MInt& x) { return *this *= inv(x.v); } bool operator==(const MInt& x) const { return v == x.v; } bool operator!=(const MInt& x) const { return v != x.v; } bool operator<(const MInt& x) const { return v < x.v; } bool operator<=(const MInt& x) const { return v <= x.v; } bool operator>(const MInt& x) const { return v > x.v; } bool operator>=(const MInt& x) const { return v >= x.v; } MInt& operator++() { if (++v == M) v = 0; return *this; } MInt operator++(int) { const MInt res = *this; ++*this; return res; } MInt& operator--() { v = (v == 0 ? M - 1 : v - 1); return *this; } MInt operator--(int) { const MInt res = *this; --*this; return res; } MInt operator+() const { return *this; } MInt operator-() const { return MInt(v ? M - v : 0); } MInt operator+(const MInt& x) const { return MInt(*this) += x; } MInt operator-(const MInt& x) const { return MInt(*this) -= x; } MInt operator*(const MInt& x) const { return MInt(*this) *= x; } MInt operator/(const MInt& x) const { return MInt(*this) /= x; } friend std::ostream& operator<<(std::ostream& os, const MInt& x) { return os << x.v; } friend std::istream& operator>>(std::istream& is, MInt& x) { long long v; is >> v; x = MInt(v); return is; } }; using ModInt = MInt<MOD>; template <typename T> std::vector<T> berlekamp_massey(const std::vector<T>& s) { const int n = s.size(); std::vector<T> b{1}, c{1}; int m = b.size(), l = c.size(), f = -1; T prv_delta = 1; for (int i = 0; i < n; ++i) { T delta = 0; for (int j = 0; j < l; ++j) { delta += c[j] * s[i - (l - j - 1)]; } if (delta == 0) continue; const T mul = -delta / prv_delta; const int shift = i - f; if (m + shift > l) { const std::vector<T> nxt_b = c; c.insert(c.begin(), m + shift - l, 0); for (int j = 0; j < m; ++j) { c[j] += mul * b[j]; } b = nxt_b; m += shift; std::swap(m, l); f = i; prv_delta = delta; } else { for (int j = 0; j < m; ++j) { c[l - 1 - shift - j] += mul * b[m - 1 - j]; } } } std::reverse(c.begin(), c.end()); return c; } int main() { const int D = 100, N = 2000000; int p, Q; cin >> p >> Q; ModInt a[D]{}; a[2] = 1; FOR(i, 3, D) a[i] = a[i - 1] * p + a[i - 2]; vector<ModInt> b(D, 0); REP(i, D) REP(j, D) { if (i + j < D) b[i + j] += a[i] * a[j]; } vector<ModInt> c = berlekamp_massey(b); c.erase(c.begin()); for (ModInt& ci : c) ci = -ci; ModInt ans[N + 1]{}; copy(ALL(b), ans); FOR(i, D, N + 1) REP(j, c.size()) ans[i] += ans[i - 1 - j] * c[j]; while (Q--) { int q; cin >> q; cout << ans[q] << '\n'; } return 0; }