結果

問題 No.980 Fibonacci Convolution Hard
ユーザー 👑 emthrmemthrm
提出日時 2022-02-27 01:12:36
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 88 ms / 2,000 ms
コード長 6,436 bytes
コンパイル時間 2,147 ms
コンパイル使用メモリ 213,432 KB
実行使用メモリ 11,264 KB
最終ジャッジ日時 2024-07-04 22:43:46
合計ジャッジ時間 7,249 ms
ジャッジサーバーID
(参考情報)
judge2 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 86 ms
11,256 KB
testcase_01 AC 86 ms
11,264 KB
testcase_02 AC 84 ms
11,264 KB
testcase_03 AC 81 ms
11,264 KB
testcase_04 AC 87 ms
11,264 KB
testcase_05 AC 83 ms
11,264 KB
testcase_06 AC 82 ms
11,212 KB
testcase_07 AC 86 ms
11,264 KB
testcase_08 AC 85 ms
11,136 KB
testcase_09 AC 85 ms
11,136 KB
testcase_10 AC 86 ms
11,264 KB
testcase_11 AC 88 ms
11,120 KB
testcase_12 AC 86 ms
11,136 KB
testcase_13 AC 85 ms
11,264 KB
testcase_14 AC 85 ms
11,140 KB
testcase_15 AC 86 ms
11,136 KB
testcase_16 AC 71 ms
11,264 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#define _USE_MATH_DEFINES
#include <bits/stdc++.h>
using namespace std;
#define FOR(i,m,n) for(int i=(m);i<(n);++i)
#define REP(i,n) FOR(i,0,n)
#define ALL(v) (v).begin(),(v).end()
using ll = long long;
constexpr int INF = 0x3f3f3f3f;
constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL;
constexpr double EPS = 1e-8;
constexpr int MOD = 1000000007;
// constexpr int MOD = 998244353;
constexpr int DY4[]{1, 0, -1, 0}, DX4[]{0, -1, 0, 1};
constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1};
constexpr int DX8[]{0, -1, -1, -1, 0, 1, 1, 1};
template <typename T, typename U>
inline bool chmax(T& a, U b) { return a < b ? (a = b, true) : false; }
template <typename T, typename U>
inline bool chmin(T& a, U b) { return a > b ? (a = b, true) : false; }
struct IOSetup {
  IOSetup() {
    std::cin.tie(nullptr);
    std::ios_base::sync_with_stdio(false);
    std::cout << fixed << setprecision(20);
  }
} iosetup;

template <int M>
struct MInt {
  unsigned int v;
  MInt() : v(0) {}
  MInt(const long long x) : v(x >= 0 ? x % M : x % M + M) {}
  static constexpr int get_mod() { return M; }
  static void set_mod(const int divisor) { assert(divisor == M); }
  static void init(const int x = 10000000) {
    inv(x, true);
    fact(x);
    fact_inv(x);
  }
  static MInt inv(const int n, const bool init = false) {
    // assert(0 <= n && n < M && std::__gcd(n, M) == 1);
    static std::vector<MInt> inverse{0, 1};
    const int prev = inverse.size();
    if (n < prev) {
      return inverse[n];
    } else if (init) {
      // "n!" and "M" must be disjoint.
      inverse.resize(n + 1);
      for (int i = prev; i <= n; ++i) {
        inverse[i] = -inverse[M % i] * (M / i);
      }
      return inverse[n];
    }
    int u = 1, v = 0;
    for (unsigned int a = n, b = M; b;) {
      const unsigned int q = a / b;
      std::swap(a -= q * b, b);
      std::swap(u -= q * v, v);
    }
    return u;
  }
  static MInt fact(const int n) {
    static std::vector<MInt> factorial{1};
    const int prev = factorial.size();
    if (n >= prev) {
      factorial.resize(n + 1);
      for (int i = prev; i <= n; ++i) {
        factorial[i] = factorial[i - 1] * i;
      }
    }
    return factorial[n];
  }
  static MInt fact_inv(const int n) {
    static std::vector<MInt> f_inv{1};
    const int prev = f_inv.size();
    if (n >= prev) {
      f_inv.resize(n + 1);
      f_inv[n] = inv(fact(n).v);
      for (int i = n; i > prev; --i) {
        f_inv[i - 1] = f_inv[i] * i;
      }
    }
    return f_inv[n];
  }
  static MInt nCk(const int n, const int k) {
    if (n < 0 || n < k || k < 0) return 0;
    return fact(n) * (n - k < k ? fact_inv(k) * fact_inv(n - k) :
                                  fact_inv(n - k) * fact_inv(k));
  }
  static MInt nPk(const int n, const int k) {
    return n < 0 || n < k || k < 0 ? 0 : fact(n) * fact_inv(n - k);
  }
  static MInt nHk(const int n, const int k) {
    return n < 0 || k < 0 ? 0 : (k == 0 ? 1 : nCk(n + k - 1, k));
  }
  static MInt large_nCk(long long n, const int k) {
    if (n < 0 || n < k || k < 0) return 0;
    inv(k, true);
    MInt res = 1;
    for (int i = 1; i <= k; ++i) {
      res *= inv(i) * n--;
    }
    return res;
  }
  MInt pow(long long exponent) const {
    MInt res = 1, tmp = *this;
    for (; exponent > 0; exponent >>= 1) {
      if (exponent & 1) res *= tmp;
      tmp *= tmp;
    }
    return res;
  }
  MInt& operator+=(const MInt& x) {
    if ((v += x.v) >= M) v -= M;
    return *this;
  }
  MInt& operator-=(const MInt& x) {
    if ((v += M - x.v) >= M) v -= M;
    return *this;
  }
  MInt& operator*=(const MInt& x) {
    v = static_cast<unsigned long long>(v) * x.v % M;
    return *this;
  }
  MInt& operator/=(const MInt& x) { return *this *= inv(x.v); }
  bool operator==(const MInt& x) const { return v == x.v; }
  bool operator!=(const MInt& x) const { return v != x.v; }
  bool operator<(const MInt& x) const { return v < x.v; }
  bool operator<=(const MInt& x) const { return v <= x.v; }
  bool operator>(const MInt& x) const { return v > x.v; }
  bool operator>=(const MInt& x) const { return v >= x.v; }
  MInt& operator++() {
    if (++v == M) v = 0;
    return *this;
  }
  MInt operator++(int) {
    const MInt res = *this;
    ++*this;
    return res;
  }
  MInt& operator--() {
    v = (v == 0 ? M - 1 : v - 1);
    return *this;
  }
  MInt operator--(int) {
    const MInt res = *this;
    --*this;
    return res;
  }
  MInt operator+() const { return *this; }
  MInt operator-() const { return MInt(v ? M - v : 0); }
  MInt operator+(const MInt& x) const { return MInt(*this) += x; }
  MInt operator-(const MInt& x) const { return MInt(*this) -= x; }
  MInt operator*(const MInt& x) const { return MInt(*this) *= x; }
  MInt operator/(const MInt& x) const { return MInt(*this) /= x; }
  friend std::ostream& operator<<(std::ostream& os, const MInt& x) {
    return os << x.v;
  }
  friend std::istream& operator>>(std::istream& is, MInt& x) {
    long long v;
    is >> v;
    x = MInt(v);
    return is;
  }
};
using ModInt = MInt<MOD>;

template <typename T>
std::vector<T> berlekamp_massey(const std::vector<T>& s) {
  const int n = s.size();
  std::vector<T> b{1}, c{1};
  int m = b.size(), l = c.size(), f = -1;
  T prv_delta = 1;
  for (int i = 0; i < n; ++i) {
    T delta = 0;
    for (int j = 0; j < l; ++j) {
      delta += c[j] * s[i - (l - j - 1)];
    }
    if (delta == 0) continue;
    const T mul = -delta / prv_delta;
    const int shift = i - f;
    if (m + shift > l) {
      const std::vector<T> nxt_b = c;
      c.insert(c.begin(), m + shift - l, 0);
      for (int j = 0; j < m; ++j) {
        c[j] += mul * b[j];
      }
      b = nxt_b;
      m += shift;
      std::swap(m, l);
      f = i;
      prv_delta = delta;
    } else {
      for (int j = 0; j < m; ++j) {
        c[l - 1 - shift - j] += mul * b[m - 1 - j];
      }
    }
  }
  std::reverse(c.begin(), c.end());
  return c;
}

int main() {
  const int D = 100, N = 2000000;
  int p, Q; cin >> p >> Q;
  ModInt a[D]{};
  a[2] = 1;
  FOR(i, 3, D) a[i] = a[i - 1] * p + a[i - 2];
  vector<ModInt> b(D, 0);
  REP(i, D) REP(j, D) {
    if (i + j < D) b[i + j] += a[i] * a[j];
  }
  vector<ModInt> c = berlekamp_massey(b);
  c.erase(c.begin());
  for (ModInt& ci : c) ci = -ci;
  ModInt ans[N + 1]{};
  copy(ALL(b), ans);
  FOR(i, D, N + 1) REP(j, c.size()) ans[i] += ans[i - 1 - j] * c[j];
  while (Q--) {
    int q; cin >> q;
    cout << ans[q] << '\n';
  }
  return 0;
}
0