結果

問題 No.980 Fibonacci Convolution Hard
ユーザー smiken_61smiken_61
提出日時 2022-02-27 23:53:09
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
TLE  
実行時間 -
コード長 10,942 bytes
コンパイル時間 4,994 ms
コンパイル使用メモリ 277,872 KB
実行使用メモリ 6,948 KB
最終ジャッジ日時 2024-07-06 02:26:13
合計ジャッジ時間 48,486 ms
ジャッジサーバーID
(参考情報)
judge1 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 TLE -
testcase_01 TLE -
testcase_02 TLE -
testcase_03 TLE -
testcase_04 TLE -
testcase_05 TLE -
testcase_06 TLE -
testcase_07 TLE -
testcase_08 TLE -
testcase_09 TLE -
testcase_10 TLE -
testcase_11 TLE -
testcase_12 TLE -
testcase_13 TLE -
testcase_14 TLE -
testcase_15 TLE -
testcase_16 TLE -
権限があれば一括ダウンロードができます

ソースコード

diff #

    #include <bits/stdc++.h>
    #include <atcoder/all>
     
     
     
     
    using namespace atcoder;
     
     
    // tabaicho see https://boostjp.github.io/tips/multiprec-int.html   
    // #include <boost/multiprecision/cpp_int.hpp>
     
    // using namespace boost::multiprecision;
     
    // cpp_int
    // int128_t
    // int256_t
    // int512_t
    // int1024_t
     
    // uint128_t
    // uint256_t
    // uint512_t
    // uint1024_t
     

     
    #define int long long
     #define inf  1000000007
    // #define inf  998244353
     
     #define pa pair<int,int>
     #define ppa pair<pa,pa>
     #define ll long long
     #define PI 3.14159265358979323846
     #define  mp make_pair
     #define  pb push_back
     #define EPS (1e-8)
     
          using namespace std;
                                              
     int dx[8]={0,1,0,-1,1,1,-1,-1};
     int dy[8]={1,0,-1,0,-1,1,1,-1};
                                                
    class pa3{
    	public:
    	int x;
    	int y,z;
    	pa3(int x=0,int y=0,int z=0):x(x),y(y),z(z) {}
    	bool operator < (const pa3 &p) const{
    		if(x!=p.x) return x<p.x;
    		if(y!=p.y) return y<p.y;
    		 return z<p.z;
    		//return x != p.x ? x<p.x: y<p.y;
    	}
    	bool operator > (const pa3 &p) const{
    		if(x!=p.x) return x>p.x;
    		if(y!=p.y) return y>p.y;
    		 return z>p.z;
    		//return x != p.x ? x<p.x: y<p.y;
    	}
    	bool operator == (const pa3 &p) const{
    		return x==p.x && y==p.y && z==p.z;
    	}
    		bool operator != (const pa3 &p) const{
    			return !( x==p.x && y==p.y && z==p.z);
    	}
     
    };
     
    class pa4{
    	public:
    	int x;
    	int y,z,w;
    	pa4(int x=0,int y=0,int z=0,int w=0):x(x),y(y),z(z),w(w) {}
    	bool operator < (const pa4 &p) const{
    		if(x!=p.x) return x<p.x;
    		if(y!=p.y) return y<p.y;
    		if(z!=p.z)return z<p.z;
    		return w<p.w;
    		//return x != p.x ? x<p.x: y<p.y;
    	}
    	bool operator > (const pa4 &p) const{
    		if(x!=p.x) return x>p.x;
    		if(y!=p.y) return y>p.y;
    		if(z!=p.z)return z>p.z;
    		return w>p.w;
    		//return x != p.x ? x<p.x: y<p.y;
    	}
    	bool operator == (const pa4 &p) const{
    		return x==p.x && y==p.y && z==p.z &&w==p.w;
    	}
    		
     
    };
    class pa2{
    	public:
    	int x,y;
    	pa2(int x=0,int y=0):x(x),y(y) {}
    	pa2 operator + (pa2 p) {return pa2(x+p.x,y+p.y);}
    	pa2 operator - (pa2 p) {return pa2(x-p.x,y-p.y);}
    	bool operator < (const pa2 &p) const{
    		return y != p.y ? y<p.y: x<p.x;
    	}
    	bool operator > (const pa2 &p) const{
    		return x != p.x ? x<p.x: y<p.y;
    	}
    	bool operator == (const pa2 &p) const{
    		return abs(x-p.x)==0 && abs(y-p.y)==0;
    	}
    	bool operator != (const pa2 &p) const{
    		return !(abs(x-p.x)==0 && abs(y-p.y)==0);
    	}
    		
     
    };
     
     
     
    string itos( int i ) {
    	ostringstream s ;
    	s << i ;
    	return s.str() ;
    }
     
    int Gcd(int v,int b){
    	if(v==0) return b;
    	if(b==0) return v;
    	if(v>b) return Gcd(b,v);
    	if(v==b) return b;
    	if(b%v==0) return v;
    	return Gcd(v,b%v);
    }
     
     
     
    int extgcd(int a, int b, int &x, int &y) {
        if (b == 0) {
            x = 1;
            y = 0;
            return a;
        }
        int d = extgcd(b, a%b, y, x);
        y -= a/b * x;
        return d;
    }
    pa operator+(const pa & l,const pa & r) {   
        return {l.first+r.first,l.second+r.second};                                    
    }    
    pa operator-(const pa & l,const pa & r) {   
        return {l.first-r.first,l.second-r.second};                                    
    }  
     
     
    pair<double,double> operator-(const pair<double,double> & l,const pair<double,double> & r) {   
        return {l.first-r.first,l.second-r.second};                                    
    }  
     
    ostream& operator<<(ostream& os, const vector<int>& VEC){
    	for(auto v:VEC)os<<v<<" ";
        return os;
    }
     
     ostream& operator<<(ostream& os, const pair<double,double>& PAI){
    	os<<PAI.first<<" : "<<PAI.second;
        return os;
    }
     
     
    ostream& operator<<(ostream& os, const pa& PAI){
    	os<<PAI.first<<" : "<<PAI.second;
        return os;
    }
     
    ostream& operator<<(ostream& os, const pa3& PAI){
    	os<<PAI.x<<" : "<<PAI.y<<" : "<<PAI.z;
        return os;
    }
     
    ostream& operator<<(ostream& os, const pa4& PAI){
    	os<<PAI.x<<" : "<<PAI.y<<" : "<<PAI.z<<" : "<<PAI.w;
        return os;
    }
     
    ostream& operator<<(ostream& os, const vector<pa>& VEC){
    	for(auto v:VEC)os<<v<<" ";
        return os;
    }
     
     
    ostream& operator<<(ostream& os, const vector<pa3>& VEC){
    	for(auto v:VEC){
    		os<<v<<" ";
    	os<<endl;
    	}
        return os;
    }
     
    int beki(int wa,ll rr,int warukazu){
    	if(rr==0) return 1%warukazu;
    	if(rr==1) return wa%warukazu;
    	wa%=warukazu;
    	if(rr%2==1) return ((ll)beki(wa,rr-1,warukazu)*(ll)wa)%warukazu;
    	ll zx=beki(wa,rr/2,warukazu);
    	return (zx*zx)%warukazu;
    }
     
     
                  
    int pr[2500002];
    int inv[2500002];
     
     
     
     
   //const int mod=998244353;
   const int mod=1000000007;
   
    int comb(int nn,int rr){
    	if(nn==-1&&rr==-1)return 1;
    	if(rr<0 || rr>nn || nn<0) return 0;
    	int r=pr[nn]*inv[rr];
    	r%=mod;
    	r*=inv[nn-rr];
    	r%=mod;
    	return r;
    }
     
    void gya(int ert){
    	pr[0]=1;
    	for(int i=1;i<=ert;i++){
    		pr[i]=((ll)pr[i-1]*i)%mod;
    	}
    		inv[ert]=beki(pr[ert],mod-2,mod);
    	for(int i=ert-1;i>=0;i--){
    		inv[i]=(ll)inv[i+1]*(i+1)%mod;
    	}
    }
     
     
    int beki(int a,int b){
    	int ANS=1;
    	int be=a%mod;
    	while(b){
    		if(b&1){
    			ANS*=be;
    			ANS%=mod;
    		}
    		be*=be;
    		be%=mod;
    		b/=2;
    	}
    	return ANS;
    }
     
                    
     
     
                    
                  //   cin.tie(0);
        		//	ios::sync_with_stdio(false);
        			//priority_queue<pa3,vector<pa3>,greater<pa3>> pq;            
                     //sort(ve.begin(),ve.end(),greater<int>());
    //    mt19937(clock_per_sec);
      //  mt19937_64 rng(chrono::steady_clock::now().time_since_epoch().count()) ;
     // a,b,c : positive int   a*b<=c  <=>  a<=c/b
    // 	auto dfs=[&](auto &&self,int r,int p)->int{
	//	};
    class Point{
    	public:
    	double x,y;
    	Point(double x=0,double y=0):x(x),y(y) {}
    	Point operator + (Point p) {return Point(x+p.x,y+p.y);}
    	Point operator - (Point p) {return Point(x-p.x,y-p.y);}
    	Point operator * (double a) {return Point(x*a,y*a);}
    	Point operator / (double a) {return Point(x/a,y/a);}
    	double absv() {return sqrt(norm());}
    	double norm() {return x*x+y*y;}
    	bool operator < (const Point &p) const{
    		return x != p.x ? x<p.x: y<p.y;
    	}
    	bool operator == (const Point &p) const{
    		return fabs(x-p.x)<EPS && fabs(y-p.y)<EPS;
    	}
    };
     
    class Line{
    	public:
    	// y=ax+b
    	double a;
    	double b;
    	Line(double a=0,double b=0):a(a),b(b) {}
    	
    	double eval(double x){return a*x+b;}
    	bool operator < (const Line &p) const{
    		return abs(a-p.a)>EPS ? a<p.a: b<p.b;
    	}
    	
    };
     
    Point intersect_line(Line A,Line B){
    	double x=(B.b-A.b)/(A.a-B.a);
    	return Point(x,A.eval(x));
    }
     
    Line line_from_2_Point(Point A,Point B){
    	// line which through A,B
    	double a=(B.y-A.y)/(B.x-A.x);
    	return Line(a,A.y-a*A.x);
    }
     





struct Segmin{
	//       1
	//   2        3
	// 4   5   6    7
	
	
	private:
	public:
	
	// (1<<15)=32768
	// 1<<16 = 65536
	// 1<<17 = 131072
	// 1<<18 = 262144
	
	int cor=(1<<19);
	
	vector<pa> vec;
	
	void shoki1(){
		vec.resize(2*cor+3, mp(inf*2000000000ll*2ll,0));
		for(int i=cor;i<2*cor;i++)vec[i].second=i-cor;
	}
	
	void shoki2(){
		for(int i=cor-1;i>0;i--) {
			if(vec[2*i].first<=vec[2*i+1].first) vec[i]=vec[2*i];
			else vec[i]=vec[2*i+1];
		}
	}
		
	void updadd(int x,int w){
		//x 項目に w加算
		x+=cor;
		vec[x].first+=w;
		x/=2;
		while(x){
			if(vec[2*x].first<=vec[2*x+1].first) vec[x]=vec[2*x];
			else vec[x]=vec[2*x+1];
			x/=2;
		}
	}
	
	void updchan(int x,int w){
		//x項目をwに変更
		x+=cor;
		vec[x].first=w;
		x/=2;
		while(x){
			if(vec[2*x].first<=vec[2*x+1].first) vec[x]=vec[2*x];
			else vec[x]=vec[2*x+1];
			x/=2;
		}
	}
	
	
	// [a,b)
	// k-th node
	// k no kukanha [l,r)
	pa segmin(int a,int b){
		a+=cor;
		b+=cor;
		pa ans=mp(inf*2000000000ll*2ll,-1);
		while(a<b){
			if(a&1){
				ans=min(ans,vec[a]);
				a++;
			}
			if(b&1){
				b--;
				ans=min(ans,vec[b]);
			}
			a/=2;
			b/=2;
		}
		return ans;
		
	}

};



using fps=vector<long long>;

fps mul(fps x,fps y){
	int xl=x.size();
	int yl=y.size();
	vector<long long> ans(xl+yl-1,0);
	
	for(int i=0;i<xl;i++)for(int j=0;j<yl;j++){
		ans[i+j]+=x[i]*y[j]%mod;
		if(ans[i+j]>=mod)ans[i+j]-=mod;
	}
	return ans;
}


vector<long long>first_terms_by_FPS(fps bunsi,fps bunbo){
	int a=bunsi.size();
	int b=bunbo.size();
	assert(a<b);
	assert(bunbo[0]!=0);
	if(bunbo[0]!=1){
		int h=beki(bunbo[0],mod-2);
		for(auto &v:bunsi)v=v*h%mod;
		for(auto &v:bunbo)v=v*h%mod;
	}
	
	while(a!=b-1){
		a++;
		bunsi.pb(0);
	}
	
	for(int i=1;i<a;i++){
		for(int j=i-1;j>=0;j--){
			bunsi[i]+=mod-bunbo[i-j]*bunsi[j]%mod;
			if(bunsi[i]>=mod)bunsi[i]-=mod;
		}
	}
	return bunsi;
}


// A[0],A[1],A[2],..,A[k-1] = first k terms of sequence
// P[0]*A[n] + P[1]*A[n-1] + P[2]*A[n-2] + P[3]*A[n-3] + ... + P[k]A[n-k] = 0
// k>=1
// P[0]!=0 P.back()!=0
// return <bunsi,bunbo>

// O(klogk)

pair<fps,fps> get_fps_form_linear(vector<long long>A,vector<long long>P){
	int k=A.size();
	int l=P.size();
	assert(k+1==l);
	
	fps e=mul(A,P);
	
	for(int i=0;i<k;i++)e.pop_back();
	
	return mp(e,P);
}
int BM(fps p,fps q,int k){
	while(k){
		while(q.size()&&q.back()==0)q.pop_back();
		while(p.size()&&p.back()==0)p.pop_back();
		
		int pl=p.size();
		int ql=q.size();
		
		if(pl==0)return 0;
		
		fps qm=q;
		for(int i=1;i<ql;i+=2)if(qm[i])qm[i]=mod-qm[i];
		
		fps e=mul(q,qm);
		
		// s/t
		
		fps s,t;
		for(int i=0;i<(int)e.size();i+=2)t.pb(e[i]);
		e=mul(p,qm);
		if(k%2==0){
			for(int i=0;i<(int)e.size();i+=2)s.pb(e[i]);
		}
		else{
			for(int i=1;i<(int)e.size();i+=2)s.pb(e[i]);	
		}
		
		swap(s,p);
		swap(t,q);
		k/=2;
		
	}
	return p[0]*beki(q[0],mod-2,mod)%mod;
}
void solve(){
	
int p;
	cin>>p;
	
	vector<int>ve={0,1};
	fps bunbo={1,mod-p,mod-1};
	
	fps bunsi=get_fps_form_linear(ve,bunbo).first;
	
	bunbo=mul(bunbo,bunbo);
	bunsi=mul(bunsi,bunsi);
	int q;
	cin>>q;
	while(q--){
		int a;
		cin>>a;
		a-=2;
		cout<<BM(bunsi,bunbo,a)<<endl;
	}
}
  
    
    signed main(){
     
    	//mod=inf;
    	cin.tie(0);
    	ios::sync_with_stdio(false);


    	int n=1;
    	//cin>>n;
    	for(int i=0;i<n;i++)solve();

     
    	return 0;
    	
    }
0