結果
問題 | No.1875 Flip Cards |
ユーザー | shino16 |
提出日時 | 2022-03-05 06:36:01 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 58,828 bytes |
コンパイル時間 | 5,179 ms |
コンパイル使用メモリ | 254,628 KB |
実行使用メモリ | 9,600 KB |
最終ジャッジ日時 | 2024-07-19 06:13:58 |
合計ジャッジ時間 | 15,891 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | WA | - |
testcase_01 | WA | - |
testcase_02 | WA | - |
testcase_03 | TLE | - |
testcase_04 | -- | - |
testcase_05 | -- | - |
testcase_06 | -- | - |
testcase_07 | -- | - |
testcase_08 | -- | - |
testcase_09 | -- | - |
ソースコード
// https://judge.yosupo.jp/submission/70080 // exp(sum c log(a + bi)) 愚直 #pragma GCC optimize("O3,unroll-loops") #pragma GCC target("avx2") #line 1 "test-oj/simd_log.test.cpp" // verification-helper: PROBLEM https://judge.yosupo.jp/problem/log_of_formal_power_series #include <cstdio> #include <vector> #include <array> #line 2 "yosupo/fastio.hpp" #include <unistd.h> #include <algorithm> #line 6 "yosupo/fastio.hpp" #include <cassert> #include <cctype> #include <cstring> #include <sstream> #include <string> #include <type_traits> #line 13 "yosupo/fastio.hpp" #line 2 "yosupo/bit.hpp" namespace yosupo { namespace internal { // @param n `0 <= n` // @return minimum non-negative `x` s.t. `n <= 2**x` int ceil_pow2(int n) { int x = 0; while ((1U << x) < (unsigned int)(n)) x++; return x; } } // namespace internal // @param n `1 <= n` // @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0` int bsf(unsigned int n) { return __builtin_ctz(n); } // @param n `1 <= n` // @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0` int bsf(unsigned long n) { return __builtin_ctzl(n); } // @param n `1 <= n` // @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0` int bsf(unsigned long long n) { return __builtin_ctzll(n); } // @param n `1 <= n` // @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0` int bsf(unsigned __int128 n) { unsigned long long low = (unsigned long long)(n); unsigned long long high = (unsigned long long)(n >> 64); return low ? __builtin_ctzll(low) : 64 + __builtin_ctzll(high); } // @param n `1 <= n` // @return maximum non-negative `x` s.t. `(n & (1 << x)) != 0` int bsr(unsigned int n) { return 8 * (int)sizeof(unsigned int) - 1 - __builtin_clz(n); } // @param n `1 <= n` // @return maximum non-negative `x` s.t. `(n & (1 << x)) != 0` int bsr(unsigned long n) { return 8 * (int)sizeof(unsigned long) - 1 - __builtin_clzl(n); } // @param n `1 <= n` // @return maximum non-negative `x` s.t. `(n & (1 << x)) != 0` int bsr(unsigned long long n) { return 8 * (int)sizeof(unsigned long long) - 1 - __builtin_clzll(n); } // @param n `1 <= n` // @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0` int bsr(unsigned __int128 n) { unsigned long long low = (unsigned long long)(n); unsigned long long high = (unsigned long long)(n >> 64); return high ? 127 - __builtin_clzll(high) : 63 - __builtin_ctzll(low); } int popcnt(unsigned int n) { return __builtin_popcount(n); } int popcnt(unsigned long n) { return __builtin_popcountl(n); } int popcnt(unsigned long long n) { return __builtin_popcountll(n); } } // namespace yosupo #line 2 "yosupo/internal_type_traits.hpp" #line 4 "yosupo/internal_type_traits.hpp" #include <numeric> #line 6 "yosupo/internal_type_traits.hpp" namespace yosupo { namespace internal { template <class T> using is_signed_int128 = typename std::conditional<std::is_same<T, __int128_t>::value || std::is_same<T, __int128>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int128 = typename std::conditional<std::is_same<T, __uint128_t>::value || std::is_same<T, unsigned __int128>::value, std::true_type, std::false_type>::type; template <class T> using make_unsigned_int128 = typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t, unsigned __int128>; template <class T> using is_integral = typename std::conditional<std::is_integral<T>::value || internal::is_signed_int128<T>::value || internal::is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using is_signed_int = typename std::conditional<(is_integral<T>::value && std::is_signed<T>::value) || is_signed_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int = typename std::conditional<(is_integral<T>::value && std::is_unsigned<T>::value) || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using to_unsigned = typename std::conditional< is_signed_int128<T>::value, make_unsigned_int128<T>, typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>, std::common_type<T>>::type>::type; template <class T> using is_integral_t = std::enable_if_t<is_integral<T>::value>; template <class T> using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>; template <class T> using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>; template <class T> using to_unsigned_t = typename to_unsigned<T>::type; } // namespace internal } // namespace yosupo #line 16 "yosupo/fastio.hpp" namespace yosupo { struct Scanner { public: Scanner(const Scanner&) = delete; Scanner& operator=(const Scanner&) = delete; Scanner(FILE* fp) : fd(fileno(fp)) { line[0] = 127; } void read() {} template <class H, class... T> void read(H& h, T&... t) { bool f = read_single(h); assert(f); read(t...); } int read_unsafe() { return 0; } template <class H, class... T> int read_unsafe(H& h, T&... t) { bool f = read_single(h); if (!f) return 0; return 1 + read_unsafe(t...); } int close() { return ::close(fd); } private: static constexpr int SIZE = 1 << 15; int fd = -1; std::array<char, SIZE + 1> line; int st = 0, ed = 0; bool eof = false; bool read_single(std::string& ref) { if (!skip_space()) return false; ref = ""; while (true) { char c = top(); if (c <= ' ') break; ref += c; st++; } return true; } bool read_single(double& ref) { std::string s; if (!read_single(s)) return false; ref = std::stod(s); return true; } template <class T, std::enable_if_t<std::is_same<T, char>::value>* = nullptr> bool read_single(T& ref) { if (!skip_space<50>()) return false; ref = top(); st++; return true; } template <class T, internal::is_signed_int_t<T>* = nullptr, std::enable_if_t<!std::is_same<T, char>::value>* = nullptr> bool read_single(T& sref) { using U = internal::to_unsigned_t<T>; if (!skip_space<50>()) return false; bool neg = false; if (line[st] == '-') { neg = true; st++; } U ref = 0; do { ref = 10 * ref + (line[st++] & 0x0f); } while (line[st] >= '0'); sref = neg ? -ref : ref; return true; } template <class U, internal::is_unsigned_int_t<U>* = nullptr, std::enable_if_t<!std::is_same<U, char>::value>* = nullptr> bool read_single(U& ref) { if (!skip_space<50>()) return false; ref = 0; do { ref = 10 * ref + (line[st++] & 0x0f); } while (line[st] >= '0'); return true; } bool reread() { if (ed - st >= 50) return true; if (st > SIZE / 2) { std::memmove(line.data(), line.data() + st, ed - st); ed -= st; st = 0; } if (eof) return false; auto u = ::read(fd, line.data() + ed, SIZE - ed); if (u == 0) { eof = true; line[ed] = '\0'; u = 1; } ed += int(u); line[ed] = char(127); return true; } char top() { if (st == ed) { bool f = reread(); assert(f); } return line[st]; } template <int TOKEN_LEN = 0> bool skip_space() { while (true) { while (line[st] <= ' ') st++; if (ed - st > TOKEN_LEN) return true; if (st > ed) st = ed; for (auto i = st; i < ed; i++) { if (line[i] <= ' ') return true; } if (!reread()) return false; } } }; struct Printer { public: template <char sep = ' ', bool F = false> void write() {} template <char sep = ' ', bool F = false, class H, class... T> void write(const H& h, const T&... t) { if (F) write_single(sep); write_single(h); write<true>(t...); } template <char sep = ' ', class... T> void writeln(const T&... t) { write<sep>(t...); write_single('\n'); } Printer(FILE* _fp) : fd(fileno(_fp)) {} ~Printer() { flush(); } int close() { flush(); return ::close(fd); } void flush() { if (pos) { auto res = ::write(fd, line.data(), pos); assert(res != -1); pos = 0; } } private: static std::array<std::array<char, 2>, 100> small; static std::array<unsigned long long, 20> tens; static constexpr size_t SIZE = 1 << 15; int fd; std::array<char, SIZE> line; size_t pos = 0; std::stringstream ss; template <class T, std::enable_if_t<std::is_same<char, T>::value>* = nullptr> void write_single(const T& val) { if (pos == SIZE) flush(); line[pos++] = val; } template <class T, internal::is_signed_int_t<T>* = nullptr, std::enable_if_t<!std::is_same<char, T>::value>* = nullptr> void write_single(const T& val) { using U = internal::to_unsigned_t<T>; if (val == 0) { write_single('0'); return; } if (pos > SIZE - 50) flush(); U uval = val; if (val < 0) { write_single('-'); uval = -uval; } write_unsigned(uval); } template <class U, internal::is_unsigned_int_t<U>* = nullptr> void write_single(U uval) { if (uval == 0) { write_single('0'); return; } if (pos > SIZE - 50) flush(); write_unsigned(uval); } template <class U, internal::is_unsigned_int_t<U>* = nullptr> static int calc_len(U x) { int i = (bsr(x) * 3 + 3) / 10; if (x < tens[i]) return i; else return i + 1; } template <class U, internal::is_unsigned_int_t<U>* = nullptr, std::enable_if_t<2 >= sizeof(U)>* = nullptr> void write_unsigned(U uval) { size_t len = calc_len(uval); pos += len; char* ptr = line.data() + pos; while (uval >= 100) { ptr -= 2; memcpy(ptr, small[uval % 100].data(), 2); uval /= 100; } if (uval >= 10) { memcpy(ptr - 2, small[uval].data(), 2); } else { *(ptr - 1) = char('0' + uval); } } template <class U, internal::is_unsigned_int_t<U>* = nullptr, std::enable_if_t<4 == sizeof(U)>* = nullptr> void write_unsigned(U uval) { std::array<char, 8> buf; memcpy(buf.data() + 6, small[uval % 100].data(), 2); memcpy(buf.data() + 4, small[uval / 100 % 100].data(), 2); memcpy(buf.data() + 2, small[uval / 10000 % 100].data(), 2); memcpy(buf.data() + 0, small[uval / 1000000 % 100].data(), 2); if (uval >= 100000000) { if (uval >= 1000000000) { memcpy(line.data() + pos, small[uval / 100000000 % 100].data(), 2); pos += 2; } else { line[pos] = char('0' + uval / 100000000); pos++; } memcpy(line.data() + pos, buf.data(), 8); pos += 8; } else { size_t len = calc_len(uval); memcpy(line.data() + pos, buf.data() + (8 - len), len); pos += len; } } template <class U, internal::is_unsigned_int_t<U>* = nullptr, std::enable_if_t<8 == sizeof(U)>* = nullptr> void write_unsigned(U uval) { size_t len = calc_len(uval); pos += len; char* ptr = line.data() + pos; while (uval >= 100) { ptr -= 2; memcpy(ptr, small[uval % 100].data(), 2); uval /= 100; } if (uval >= 10) { memcpy(ptr - 2, small[uval].data(), 2); } else { *(ptr - 1) = char('0' + uval); } } template < class U, std::enable_if_t<internal::is_unsigned_int128<U>::value>* = nullptr> void write_unsigned(U uval) { static std::array<char, 50> buf; size_t len = 0; while (uval > 0) { buf[len++] = char((uval % 10) + '0'); uval /= 10; } std::reverse(buf.begin(), buf.begin() + len); memcpy(line.data() + pos, buf.data(), len); pos += len; } void write_single(const std::string& s) { for (char c : s) write_single(c); } void write_single(const char* s) { size_t len = strlen(s); for (size_t i = 0; i < len; i++) write_single(s[i]); } template <class T> void write_single(const std::vector<T>& val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) write_single(' '); write_single(val[i]); } } }; std::array<std::array<char, 2>, 100> Printer::small = [] { std::array<std::array<char, 2>, 100> table; for (int i = 0; i <= 99; i++) { table[i][1] = char('0' + (i % 10)); table[i][0] = char('0' + (i / 10 % 10)); } return table; }(); std::array<unsigned long long, 20> Printer::tens = [] { std::array<unsigned long long, 20> table; for (int i = 0; i < 20; i++) { table[i] = 1; for (int j = 0; j < i; j++) { table[i] *= 10; } } return table; }(); } // namespace yosupo #line 2 "yosupo/modint.hpp" #line 1 "ac-library/atcoder/modint.hpp" #line 7 "ac-library/atcoder/modint.hpp" #ifdef _MSC_VER #include <intrin.h> #endif #line 1 "ac-library/atcoder/internal_math.hpp" #include <utility> #ifdef _MSC_VER #include <intrin.h> #endif namespace atcoder { namespace internal { // @param m `1 <= m` // @return x mod m constexpr long long safe_mod(long long x, long long m) { x %= m; if (x < 0) x += m; return x; } // Fast modular multiplication by barrett reduction // Reference: https://en.wikipedia.org/wiki/Barrett_reduction // NOTE: reconsider after Ice Lake struct barrett { unsigned int _m; unsigned long long im; // @param m `1 <= m < 2^31` explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {} // @return m unsigned int umod() const { return _m; } // @param a `0 <= a < m` // @param b `0 <= b < m` // @return `a * b % m` unsigned int mul(unsigned int a, unsigned int b) const { // [1] m = 1 // a = b = im = 0, so okay // [2] m >= 2 // im = ceil(2^64 / m) // -> im * m = 2^64 + r (0 <= r < m) // let z = a*b = c*m + d (0 <= c, d < m) // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2 // ((ab * im) >> 64) == c or c + 1 unsigned long long z = a; z *= b; #ifdef _MSC_VER unsigned long long x; _umul128(z, im, &x); #else unsigned long long x = (unsigned long long)(((unsigned __int128)(z)*im) >> 64); #endif unsigned int v = (unsigned int)(z - x * _m); if (_m <= v) v += _m; return v; } }; // @param n `0 <= n` // @param m `1 <= m` // @return `(x ** n) % m` constexpr long long pow_mod_constexpr(long long x, long long n, int m) { if (m == 1) return 0; unsigned int _m = (unsigned int)(m); unsigned long long r = 1; unsigned long long y = safe_mod(x, m); while (n) { if (n & 1) r = (r * y) % _m; y = (y * y) % _m; n >>= 1; } return r; } // Reference: // M. Forisek and J. Jancina, // Fast Primality Testing for Integers That Fit into a Machine Word // @param n `0 <= n` constexpr bool is_prime_constexpr(int n) { if (n <= 1) return false; if (n == 2 || n == 7 || n == 61) return true; if (n % 2 == 0) return false; long long d = n - 1; while (d % 2 == 0) d /= 2; constexpr long long bases[3] = {2, 7, 61}; for (long long a : bases) { long long t = d; long long y = pow_mod_constexpr(a, t, n); while (t != n - 1 && y != 1 && y != n - 1) { y = y * y % n; t <<= 1; } if (y != n - 1 && t % 2 == 0) { return false; } } return true; } template <int n> constexpr bool is_prime = is_prime_constexpr(n); // @param b `1 <= b` // @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) { a = safe_mod(a, b); if (a == 0) return {b, 0}; // Contracts: // [1] s - m0 * a = 0 (mod b) // [2] t - m1 * a = 0 (mod b) // [3] s * |m1| + t * |m0| <= b long long s = b, t = a; long long m0 = 0, m1 = 1; while (t) { long long u = s / t; s -= t * u; m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b // [3]: // (s - t * u) * |m1| + t * |m0 - m1 * u| // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u) // = s * |m1| + t * |m0| <= b auto tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } // by [3]: |m0| <= b/g // by g != b: |m0| < b/g if (m0 < 0) m0 += b / s; return {s, m0}; } // Compile time primitive root // @param m must be prime // @return primitive root (and minimum in now) constexpr int primitive_root_constexpr(int m) { if (m == 2) return 1; if (m == 167772161) return 3; if (m == 469762049) return 3; if (m == 754974721) return 11; if (m == 998244353) return 3; int divs[20] = {}; divs[0] = 2; int cnt = 1; int x = (m - 1) / 2; while (x % 2 == 0) x /= 2; for (int i = 3; (long long)(i)*i <= x; i += 2) { if (x % i == 0) { divs[cnt++] = i; while (x % i == 0) { x /= i; } } } if (x > 1) { divs[cnt++] = x; } for (int g = 2;; g++) { bool ok = true; for (int i = 0; i < cnt; i++) { if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) { ok = false; break; } } if (ok) return g; } } template <int m> constexpr int primitive_root = primitive_root_constexpr(m); // @param n `n < 2^32` // @param m `1 <= m < 2^32` // @return sum_{i=0}^{n-1} floor((ai + b) / m) (mod 2^64) unsigned long long floor_sum_unsigned(unsigned long long n, unsigned long long m, unsigned long long a, unsigned long long b) { unsigned long long ans = 0; while (true) { if (a >= m) { ans += n * (n - 1) / 2 * (a / m); a %= m; } if (b >= m) { ans += n * (b / m); b %= m; } unsigned long long y_max = a * n + b; if (y_max < m) break; // y_max < m * (n + 1) // floor(y_max / m) <= n n = (unsigned long long)(y_max / m); b = (unsigned long long)(y_max % m); std::swap(m, a); } return ans; } } // namespace internal } // namespace atcoder #line 1 "ac-library/atcoder/internal_type_traits.hpp" #line 7 "ac-library/atcoder/internal_type_traits.hpp" namespace atcoder { namespace internal { #ifndef _MSC_VER template <class T> using is_signed_int128 = typename std::conditional<std::is_same<T, __int128_t>::value || std::is_same<T, __int128>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int128 = typename std::conditional<std::is_same<T, __uint128_t>::value || std::is_same<T, unsigned __int128>::value, std::true_type, std::false_type>::type; template <class T> using make_unsigned_int128 = typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t, unsigned __int128>; template <class T> using is_integral = typename std::conditional<std::is_integral<T>::value || is_signed_int128<T>::value || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using is_signed_int = typename std::conditional<(is_integral<T>::value && std::is_signed<T>::value) || is_signed_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int = typename std::conditional<(is_integral<T>::value && std::is_unsigned<T>::value) || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using to_unsigned = typename std::conditional< is_signed_int128<T>::value, make_unsigned_int128<T>, typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>, std::common_type<T>>::type>::type; #else template <class T> using is_integral = typename std::is_integral<T>; template <class T> using is_signed_int = typename std::conditional<is_integral<T>::value && std::is_signed<T>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int = typename std::conditional<is_integral<T>::value && std::is_unsigned<T>::value, std::true_type, std::false_type>::type; template <class T> using to_unsigned = typename std::conditional<is_signed_int<T>::value, std::make_unsigned<T>, std::common_type<T>>::type; #endif template <class T> using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>; template <class T> using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>; template <class T> using to_unsigned_t = typename to_unsigned<T>::type; } // namespace internal } // namespace atcoder #line 14 "ac-library/atcoder/modint.hpp" namespace atcoder { namespace internal { struct modint_base {}; struct static_modint_base : modint_base {}; template <class T> using is_modint = std::is_base_of<modint_base, T>; template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>; } // namespace internal template <int m, std::enable_if_t<(1 <= m)>* = nullptr> struct static_modint : internal::static_modint_base { using mint = static_modint; public: static constexpr int mod() { return m; } static mint raw(int v) { mint x; x._v = v; return x; } static_modint() : _v(0) {} template <class T, internal::is_signed_int_t<T>* = nullptr> static_modint(T v) { long long x = (long long)(v % (long long)(umod())); if (x < 0) x += umod(); _v = (unsigned int)(x); } template <class T, internal::is_unsigned_int_t<T>* = nullptr> static_modint(T v) { _v = (unsigned int)(v % umod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v -= rhs._v; if (_v >= umod()) _v += umod(); return *this; } mint& operator*=(const mint& rhs) { unsigned long long z = _v; z *= rhs._v; _v = (unsigned int)(z % umod()); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { if (prime) { assert(_v); return pow(umod() - 2); } else { auto eg = internal::inv_gcd(_v, m); assert(eg.first == 1); return eg.second; } } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static constexpr unsigned int umod() { return m; } static constexpr bool prime = internal::is_prime<m>; }; template <int id> struct dynamic_modint : internal::modint_base { using mint = dynamic_modint; public: static int mod() { return (int)(bt.umod()); } static void set_mod(int m) { assert(1 <= m); bt = internal::barrett(m); } static mint raw(int v) { mint x; x._v = v; return x; } dynamic_modint() : _v(0) {} template <class T, internal::is_signed_int_t<T>* = nullptr> dynamic_modint(T v) { long long x = (long long)(v % (long long)(mod())); if (x < 0) x += mod(); _v = (unsigned int)(x); } template <class T, internal::is_unsigned_int_t<T>* = nullptr> dynamic_modint(T v) { _v = (unsigned int)(v % mod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v += mod() - rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator*=(const mint& rhs) { _v = bt.mul(_v, rhs._v); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { auto eg = internal::inv_gcd(_v, mod()); assert(eg.first == 1); return eg.second; } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static internal::barrett bt; static unsigned int umod() { return bt.umod(); } }; template <int id> internal::barrett dynamic_modint<id>::bt(998244353); using modint998244353 = static_modint<998244353>; using modint1000000007 = static_modint<1000000007>; using modint = dynamic_modint<-1>; namespace internal { template <class T> using is_static_modint = std::is_base_of<internal::static_modint_base, T>; template <class T> using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>; template <class> struct is_dynamic_modint : public std::false_type {}; template <int id> struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {}; template <class T> using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>; } // namespace internal } // namespace atcoder #line 4 "yosupo/modint.hpp" #include <iostream> namespace atcoder { template <int MOD> std::ostream& operator<<(std::ostream& os, const static_modint<MOD>& x) { return os << x.val(); } template <int ID> std::ostream& operator<<(std::ostream& os, const dynamic_modint<ID>& x) { return os << x.val(); } } // namespace atcoder namespace yosupo { template <int MOD> using static_modint = atcoder::static_modint<MOD>; template <int ID> using dynamic_modint = atcoder::dynamic_modint<ID>; using modint998244353 = atcoder::modint998244353; using modint1000000007 = atcoder::modint1000000007; using modint = atcoder::modint; } // namespace yosupo #line 2 "yosupo/simd/fps.hpp" #line 1 "ac-library/atcoder/internal_bit.hpp" #ifdef _MSC_VER #include <intrin.h> #endif namespace atcoder { namespace internal { // @param n `0 <= n` // @return minimum non-negative `x` s.t. `n <= 2**x` int ceil_pow2(int n) { int x = 0; while ((1U << x) < (unsigned int)(n)) x++; return x; } // @param n `1 <= n` // @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0` constexpr int bsf_constexpr(unsigned int n) { int x = 0; while (!(n & (1 << x))) x++; return x; } // @param n `1 <= n` // @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0` int bsf(unsigned int n) { #ifdef _MSC_VER unsigned long index; _BitScanForward(&index, n); return index; #else return __builtin_ctz(n); #endif } } // namespace internal } // namespace atcoder #line 2 "yosupo/comb.hpp" #line 4 "yosupo/comb.hpp" namespace yosupo { namespace internal { template <class T> struct CombState { int size = 1; std::vector<T> fact = {T(1)}; std::vector<T> inv_fact = {T(1)}; std::vector<T> inv = {T(0)}; void extend() { fact.resize(2 * size); inv_fact.resize(2 * size); inv.resize(2 * size); for (int i = size; i < 2 * size; i++) { fact[i] = fact[i - 1] * T(i); } inv_fact[2 * size - 1] = fact[2 * size - 1].inv(); for (int i = 2 * size - 1; i >= size + 1; i--) { inv_fact[i - 1] = inv_fact[i] * T(i); } for (int i = size; i < 2 * size; i++) { inv[i] = inv_fact[i] * fact[i - 1]; } size *= 2; } }; template <class T> CombState<T>& get_comb_state(int n) { static CombState<T> state; while (state.size <= n) state.extend(); return state; } } template <class T> T fact(int x) { assert(0 <= x); return internal::get_comb_state<T>(x).fact[x]; } template <class T> T inv_fact(int x) { assert(0 <= x); return internal::get_comb_state<T>(x).inv_fact[x]; } template <class T> T inv(int x) { assert(0 <= x); return internal::get_comb_state<T>(x).inv[x]; } namespace internal { template <class T> T comb(int n, int k) { return fact<T>(n) * inv_fact<T>(k) * inv_fact<T>(n - k); } } template <class T> T comb(int n, int k) { assert(0 <= k); if (0 <= n && n < k) return 0; if (n >= 0) { return internal::comb<T>(n, k); } T x = internal::comb<T>(k - n - 1, k); if (k % 2) x = -x; return x; } } #line 2 "yosupo/simd/convolution.hpp" #line 2 "yosupo/simd/modint.hpp" #line 2 "yosupo/simd/vector.hpp" static_assert(__cplusplus >= 201703L, "C++17 or later"); #include <immintrin.h> #line 7 "yosupo/simd/vector.hpp" namespace yosupo { struct llx4 { public: llx4() : d() {} llx4(long long x) : d(_mm256_set1_epi64x(x)) {} llx4(const __m256i& x) : d(x) {} llx4(const std::array<long long, 8>& x) : d(_mm256_loadu_si256((__m256i*)x.data())) {} llx4(long long x0, long long x1, long long x2, long long x3) : d(_mm256_set_epi64x(x3, x2, x1, x0)) {} std::array<long long, 4> to_array() const { alignas(32) std::array<long long, 4> b; _mm256_store_si256((__m256i*)b.data(), d); return b; } long long at(int i) const { alignas(32) std::array<long long, 4> b; _mm256_store_si256((__m256i*)b.data(), d); return b[i]; } void set(int i, long long x) { alignas(32) std::array<long long, 4> b; _mm256_store_si256((__m256i*)b.data(), d); b[i] = x; d = _mm256_load_si256((__m256i*)b.data()); } llx4& operator+=(const llx4& rhs) { d = _mm256_add_epi64(d, rhs.d); return *this; } friend llx4 operator+(const llx4& lhs, const llx4& rhs) { return llx4(lhs) += rhs; } llx4& operator-=(const llx4& rhs) { d = _mm256_sub_epi64(d, rhs.d); return *this; } friend llx4 operator-(const llx4& lhs, const llx4& rhs) { return llx4(lhs) -= rhs; } __m256i raw() const { return d; } __m256i d; }; struct intx8 { public: intx8() : d() {} intx8(int x) : d(_mm256_set1_epi32(x)) {} intx8(const __m256i& x) : d(x) {} intx8(const std::array<int, 8>& x) : d(_mm256_loadu_si256((__m256i*)x.data())) {} intx8(int x0, int x1, int x2, int x3, int x4, int x5, int x6, int x7) : d(_mm256_set_epi32(x7, x6, x5, x4, x3, x2, x1, x0)) {} std::array<int, 8> to_array() const { alignas(32) std::array<int, 8> b; _mm256_store_si256((__m256i*)b.data(), d); return b; } int at(int i) const { alignas(32) std::array<int, 8> b; _mm256_store_si256((__m256i*)b.data(), d); return b[i]; } void set(int i, int x) { alignas(32) std::array<int, 8> b; _mm256_store_si256((__m256i*)b.data(), d); b[i] = x; d = _mm256_load_si256((__m256i*)b.data()); } intx8& operator+=(const intx8& rhs) { d = _mm256_add_epi32(d, rhs.d); return *this; } friend intx8 operator+(const intx8& lhs, const intx8& rhs) { return intx8(lhs) += rhs; } intx8& operator-=(const intx8& rhs) { d = _mm256_sub_epi32(d, rhs.d); return *this; } friend intx8 operator-(const intx8& lhs, const intx8& rhs) { return intx8(lhs) -= rhs; } // return (0246, 1357) std::pair<llx4, llx4> mul(const intx8 rhs) const { __m256i x0246 = _mm256_mul_epi32(d, rhs.d); __m256i x1357 = _mm256_mul_epi32(_mm256_shuffle_epi32(d, 0xf5), _mm256_shuffle_epi32(rhs.d, 0xf5)); return {x0246, x1357}; } intx8& operator&=(const intx8& rhs) { d = _mm256_and_si256(d, rhs.d); return *this; } friend intx8 operator&(const intx8& lhs, const intx8& rhs) { return intx8(lhs) &= rhs; } // d[i] <<= r[i] (not mod 32) intx8 operator<<=(const intx8& rhs) { d = _mm256_sllv_epi32(d, rhs.d); return *this; } friend intx8 operator<<(const intx8& lhs, const intx8& rhs) { return intx8(lhs) <<= rhs; } // (d[i] > rhs[i] ? -1 : 0), -1 means that all bit set intx8 operator>(const intx8& rhs) const { return _mm256_cmpgt_epi32(d, rhs.d); } intx8 operator<(const intx8& rhs) const { return rhs > *this; } bool test_all_zero() const { return _mm256_testz_si256(d, d) == 1; } // (d[i] < 0 ? -1 : 0), -1 means that all bit set intx8 sign() const { return *this < intx8(_mm256_setzero_si256()); } intx8 abs() const { return intx8(_mm256_abs_epi32(d)); } // d[i] = ((n & (1 << i)) ? 0 : d[i]) intx8 clear(unsigned char n) { intx8 mask = intx8(n) << intx8(31, 30, 29, 28, 27, 26, 25, 24); d = _mm256_andnot_si256(_mm256_srai_epi32(mask.d, 31), d); return *this; } // return (0246, 1357) std::pair<llx4, llx4> split() const { return { llx4(((*this) & intx8(-1, 0, -1, 0, -1, 0, -1, 0)).d), llx4(_mm256_srli_epi64(d, 32)), }; } __m256i raw() const { return d; } __m256i d; }; } // namespace yosupo #line 5 "yosupo/simd/modint.hpp" namespace yosupo { // f(x[i]) = (x[i] / (2^32)) (mod m) // input range: x[i] + (2^32 - 1) * m < 2^63 // output range: (x[i] / 2^32) <= f(x[i]) <= floor(x[i] / 2^32) + m template <int MOD> intx8 montgomery_reduction(const llx4& x0246, const llx4& x1357) { static_assert(MOD > 0 && MOD % 2, "mod must be positive & odd"); static constexpr int nim = -(int)atcoder::internal::inv_gcd(MOD, 1LL << 32).second; __m256i km0246 = _mm256_mul_epu32(_mm256_mul_epu32(x0246.raw(), _mm256_set1_epi32(nim)), _mm256_set1_epi32(MOD)); __m256i km1357 = _mm256_mul_epu32(_mm256_mul_epu32(x1357.raw(), _mm256_set1_epi32(nim)), _mm256_set1_epi32(MOD)); llx4 z0246 = llx4(x0246) + llx4(km0246); llx4 z1357 = llx4(x1357) + llx4(km1357); return _mm256_blend_epi32(_mm256_shuffle_epi32(z0246.raw(), 0xf5), z1357.raw(), 0b10101010); } /* vectorized modint (by montgomery reduction) */ template <int MOD> struct modintx8 { static_assert(MOD % 2, "mod must be positive & odd"); static_assert(1 <= MOD && MOD <= (1 << 30) - 1, "mod range: [1, (1<<30) - 1]"); using mint = static_modint<MOD>; static const int B = ((1LL << 32)) % MOD; static const int iB = atcoder::internal::inv_gcd(B, MOD).second; // 0 <= d && d <= 2 * mod // d[i] = (actual value) * B intx8 d; modintx8() : d(0) {} modintx8(const std::array<mint, 8>& _d) { d = intx8(_d[0].val(), _d[1].val(), _d[2].val(), _d[3].val(), _d[4].val(), _d[5].val(), _d[6].val(), _d[7].val()); (*this) *= modintx8(B); } modintx8(mint x0, mint x1, mint x2, mint x3, mint x4, mint x5, mint x6, mint x7) : d(_mm256_set_epi32(x7.val(), x6.val(), x5.val(), x4.val(), x3.val(), x2.val(), x1.val(), x0.val())) { (*this) *= modintx8(B); } modintx8(mint x) : d(int((x * B).val())) {} mint at(int i) const { return mint(1ULL * d.at(i) * iB); } void set(int i, mint x) { d.set(i, (x * B).val()); } modintx8& operator+=(const modintx8& rhs) { d += rhs.d; d -= intx8(2 * MOD); d += intx8(2 * MOD) & d.sign(); return *this; } modintx8& operator-=(const modintx8& rhs) { d -= rhs.d; d += intx8(2 * MOD) & d.sign(); return *this; } modintx8& operator*=(const modintx8& rhs) { auto v = d.mul(rhs.d); d = montgomery_reduction<mint::mod()>(v.first, v.second); return *this; } friend modintx8 operator+(const modintx8& lhs, const modintx8& rhs) { return modintx8(lhs) += rhs; } friend modintx8 operator-(const modintx8& lhs, const modintx8& rhs) { return modintx8(lhs) -= rhs; } friend modintx8 operator*(const modintx8& lhs, const modintx8& rhs) { return modintx8(lhs) *= rhs; } template <int N> modintx8 neg() const { modintx8 w; w.d = (d - intx8(_mm256_blend_epi32(_mm256_setzero_si256(), _mm256_set1_epi32(2 * MOD), N))) .abs(); return w; } modintx8 operator-() const { return neg<0b11111111>(); } modintx8& clear(unsigned char n) { d.clear(n); return *this; } template <int N> modintx8 shuffle() const { modintx8 x; x.d.d = _mm256_shuffle_epi32(d.d, N); return x; } template <int N> modintx8 shufflex4() const { modintx8 x; x.d.d = _mm256_permute2x128_si256(d.d, d.d, N); return x; } std::array<mint, 8> to_array() const { auto buf = (*this * modintx8(iB)).d; buf -= intx8(MOD) & (buf > intx8(MOD - 1)); auto v = buf.to_array(); std::array<mint, 8> x; for (int i = 0; i < 8; i++) { x[i] = mint::raw(v[i]); } return x; } static modintx8 from_raw(const intx8& _d) { modintx8 x; x.d = _d; return x; } }; } // namespace yosupo #line 6 "yosupo/simd/convolution.hpp" #line 10 "yosupo/simd/convolution.hpp" namespace yosupo { template <int MOD> struct fft_info { using mint = static_modint<MOD>; using mintx8 = modintx8<MOD>; static constexpr int g = atcoder::internal::primitive_root<MOD>; static constexpr int rank2 = atcoder::internal::bsf_constexpr(mint::mod() - 1); std::array<mint, rank2 + 1> root, iroot; // root[i]^(2^i) == 1, root[i] * iroot[i] == 1 std::array<mint, std::max(0, rank2 - 1 + 1)> rate2, irate2; std::array<mintx8, std::max(0, rank2 - 1 + 1)> rate2x; std::array<mint, std::max(0, rank2 - 2 + 1)> rate3, irate3; std::array<mint, std::max(0, rank2 - 3 + 1)> rate4, irate4; std::array<mintx8, std::max(0, rank2 - 3 + 1)> rate4xi, irate4xi; // rate4xi[i][j] = rate4[i]^j fft_info() { root[rank2] = mint(g).pow((mint::mod() - 1) >> rank2); iroot[rank2] = root[rank2].inv(); for (int i = rank2 - 1; i >= 0; i--) { root[i] = root[i + 1] * root[i + 1]; iroot[i] = iroot[i + 1] * iroot[i + 1]; } { mint prod = 1, iprod = 1; for (int i = 0; i <= rank2 - 2; i++) { rate2[i] = root[i + 2] * prod; irate2[i] = iroot[i + 2] * iprod; prod *= iroot[i + 2]; iprod *= root[i + 2]; } for (int i = 0; i <= rank2 - 2; i++) { rate2x[i] = mintx8(rate2[i]); } } { mint prod = 1, iprod = 1; for (int i = 0; i <= rank2 - 3; i++) { rate3[i] = root[i + 3] * prod; irate3[i] = iroot[i + 3] * iprod; prod *= iroot[i + 3]; iprod *= root[i + 3]; } } { mint prod = 1, iprod = 1; for (int i = 0; i <= rank2 - 4; i++) { rate4[i] = root[i + 4] * prod; irate4[i] = iroot[i + 4] * iprod; prod *= iroot[i + 4]; iprod *= root[i + 4]; std::array<mint, 8> buf, ibuf; for (int j = 0; j < 8; j++) { buf[j] = rate4[i].pow(j); ibuf[j] = irate4[i].pow(j); } rate4xi[i] = buf; irate4xi[i] = ibuf; } } } }; template <int MOD> void butterfly(std::vector<modintx8<MOD>>& _a) { int n = int(_a.size() * 8); using mint = static_modint<MOD>; using mintx8 = modintx8<MOD>; int h = internal::ceil_pow2(n); static const fft_info<MOD> info; const mint imag = info.root[2]; assert(n >= 8 && n % 8 == 0); int n8 = n / 8; int len = 0; // a[i, i+(n>>len), i+2*(n>>len), ..] is transformed if (h % 2 == 0) { // 2-base int p = n8 / 2; for (int i = 0; i < p; i++) { auto l = _a[i]; auto r = _a[i + p]; _a[i] = l + r; _a[i + p] = l - r; } len++; } while (len + 5 <= h) { // 4-base int p = 1 << (h - len - 5); mintx8 rotx(1); auto imagx = mintx8(imag); imagx.d -= intx8(998244353) & (imagx.d > intx8(998244352)); for (int s = 0; s < (1 << len); s++) { auto rot2x = rotx * rotx; auto rot3x = rot2x * rotx; int offset = s << (h - len - 3); for (int i = 0; i < p; i++) { auto a0 = _a[i + offset + 0 * p]; auto a1 = _a[i + offset + 1 * p] * rotx; auto a2 = _a[i + offset + 2 * p] * rot2x; auto a3 = _a[i + offset + 3 * p] * rot3x; _a[i + offset + 0 * p] = (a0 + a2) + (a1 + a3); _a[i + offset + 1 * p] = (a0 + a2) - (a1 + a3); _a[i + offset + 2 * p] = (a0 - a2) + (a1 - a3) * imagx; _a[i + offset + 3 * p] = (a0 - a2) - (a1 - a3) * imagx; } rotx *= mintx8(info.rate3[bsf(~(unsigned int)(s))]); } len += 2; } { // 8-base assert(len + 3 == h); mint e8 = info.root[3]; const mintx8 step1 = mintx8(1, 1, 1, 1, 1, e8, e8 * e8, e8 * e8 * e8); const mintx8 step2 = mintx8(1, 1, 1, imag, 1, 1, 1, imag); auto rotxi = mintx8(1); for (int s = 0; s < n8; s++) { mintx8 v = _a[s] * rotxi; v = (v.template neg<0b11110000>() + v.template shufflex4<0b01>()) * step1; v = (v.template neg<0b11001100>() + v.template shuffle<0b01001110>()) * step2; v = (v.template neg<0b10101010>() + v.template shuffle<0b10110001>()); _a[s] = v; rotxi *= info.rate4xi[bsf(~(unsigned int)(s))]; } len += 3; } } template <int MOD> void butterfly_inv(std::vector<modintx8<MOD>>& _a) { int n = int(_a.size() * 8); using mint = static_modint<MOD>; using mintx8 = modintx8<MOD>; int h = internal::ceil_pow2(n); static const fft_info<MOD> info; assert(n >= 8 && n % 8 == 0); const mint iimag = info.iroot[2]; const mintx8 iimagx = iimag; int n8 = n / 8; int len = h; // a[i, i+(n>>len), i+2*(n>>len), ..] is transformed { // 8-base mint ie8 = info.iroot[3]; const mintx8 istep1 = mintx8(1, 1, 1, 1, 1, ie8, ie8 * ie8, ie8 * ie8 * ie8); const mintx8 istep2 = mintx8(1, 1, 1, iimag, 1, 1, 1, iimag); auto irotxi = mintx8(1); for (int s = 0; s < n8; s++) { auto v = _a[s]; v = (v.template neg<0b10101010>() + v.template shuffle<0b10110001>()) * istep2; v = (v.template neg<0b11001100>() + v.template shuffle<0b01001110>()) * istep1; v = (v.template neg<0b11110000>() + v.template shufflex4<0b01>()) * irotxi; _a[s] = v; irotxi *= info.irate4xi[bsf(~(unsigned int)(s))]; } len -= 3; } while (len >= 2) { int p = 1 << (h - len - 3); auto irotx = mintx8(1); for (int s = 0; s < (1 << (len - 2)); s++) { auto irot2x = irotx * irotx; auto irot3x = irot2x * irotx; int offset = s << (h - len - 1); for (int i = 0; i < p; i++) { auto a0 = _a[i + offset + 0 * p]; auto a1 = _a[i + offset + 1 * p]; auto a2 = _a[i + offset + 2 * p]; auto a3 = _a[i + offset + 3 * p]; auto a0a1 = a0 + a1; auto a0na1 = a0 - a1; auto a2a3 = a2 + a3; auto a2na3iimag = (a2 - a3) * iimagx; _a[i + offset + 0 * p] = a0a1 + a2a3; _a[i + offset + 1 * p] = (a0na1 + a2na3iimag) * irotx; _a[i + offset + 2 * p] = (a0a1 - a2a3) * irot2x; _a[i + offset + 3 * p] = (a0na1 - a2na3iimag) * irot3x; } irotx *= info.irate3[bsf(~(unsigned int)(s))]; } len -= 2; } if (len == 1) { int p = 1 << (h - 4); for (int i = 0; i < p; i++) { auto l = _a[i]; auto r = _a[i + p]; _a[i] = l + r; _a[i + p] = l - r; } len--; } } template <int MOD> std::vector<modintx8<MOD>> convolution(std::vector<modintx8<MOD>> a, std::vector<modintx8<MOD>> b) { int n = int(a.size()); int m = int(b.size()); int z = 1 << internal::ceil_pow2(n + m); a.resize(z); butterfly(a); b.resize(z); butterfly(b); for (int i = 0; i < z; i++) { a[i] *= b[i]; } butterfly_inv(a); a.resize(n + m); modintx8<MOD> iz = static_modint<MOD>(8 * z).inv(); for (int i = 0; i < n + m; i++) a[i] *= iz; return a; } template <int MOD> void butterfly(std::vector<static_modint<MOD>>& a) { using mint = static_modint<MOD>; using mintx8 = modintx8<MOD>; int n = int(a.size()); int n2 = (n + 7) / 8; std::vector<mintx8> a2(n2); for (int i = 0; i < n2; i++) { std::array<mint, 8> v; for (int j = 0; j < 8 && (i * 8 + j) < n; j++) { v[j] = a[i * 8 + j]; } a2[i] = v; } butterfly(a2); for (int i = 0; i < n2; i++) { auto v = a2[i].to_array(); for (int j = 0; j < 8 && (i * 8 + j) < n; j++) { a[i * 8 + j] = v[j]; } } } template <int MOD> void butterfly_inv(std::vector<static_modint<MOD>>& a) { using mint = static_modint<MOD>; using mintx8 = modintx8<MOD>; int n = int(a.size()); int n2 = (n + 7) / 8; std::vector<mintx8> a2(n2); for (int i = 0; i < n2; i++) { std::array<mint, 8> v; for (int j = 0; j < 8 && (i * 8 + j) < n; j++) { v[j] = a[i * 8 + j]; } a2[i] = v; } butterfly_inv(a2); for (int i = 0; i < n2; i++) { auto v = a2[i].to_array(); for (int j = 0; j < 8 && (i * 8 + j) < n; j++) { a[i * 8 + j] = v[j]; } } } } // namespace yosupo #line 8 "yosupo/simd/fps.hpp" #line 11 "yosupo/simd/fps.hpp" namespace yosupo { template <int MOD> struct FPS { using mint = static_modint<MOD>; using mintx8 = modintx8<MOD>; public: FPS() : _size(0) {} FPS(const std::vector<mint>& _v) : _size(int(_v.size())) { int size8 = (_size + 7) / 8; v.resize(size8); for (int i = 0; i < size8; i++) { std::array<mint, 8> buf; for (int j = 0; j < 8 && (i * 8 + j) < _size; j++) { buf[j] = _v[i * 8 + j]; } v[i] = buf; } } mint freq(int n) const { return v[n / 8].at(n % 8); } size_t size() const { return _size; } FPS pre(int n) const { n = std::min(n, int(v.size() * 8)); auto v2 = std::vector<mintx8>({v.begin(), v.begin() + (n + 7) / 8}); if (n % 8) { v2.back().clear((unsigned char)(-1U << (n % 8))); } return FPS(n, v2); } FPS& operator+=(const FPS& rhs) { _size = std::max(_size, int(rhs.size())); int n = int(rhs.v.size()); if (int(v.size()) < n) v.resize(n); for (int i = 0; i < n; i++) { v[i] += rhs.v[i]; } return *this; } friend FPS operator+(const FPS& lhs, const FPS& rhs) { return FPS(lhs) += rhs; } FPS& operator-=(const FPS& rhs) { _size = std::max(_size, int(rhs.size())); int n = int(rhs.v.size()); if (int(v.size()) < n) v.resize(n); for (int i = 0; i < n; i++) { v[i] -= rhs.v[i]; } return *this; } friend FPS operator-(const FPS& lhs, const FPS& rhs) { return FPS(lhs) -= rhs; } FPS& operator*=(const FPS& rhs) { _size = _size + int(rhs.size()) - 1; int nsize8 = (_size + 7) / 8; int z = 1 << atcoder::internal::ceil_pow2(nsize8); auto rv = rhs.v; v.resize(z); rv.resize(z); butterfly(v); butterfly(rv); for (int i = 0; i < z; i++) { v[i] *= rv[i]; } butterfly_inv(v); v.resize(nsize8); modintx8<MOD> iz = static_modint<MOD>(8 * z).inv(); for (int i = 0; i < nsize8; i++) { v[i] *= iz; } return *this; } friend FPS operator*(const FPS& lhs, const FPS& rhs) { return FPS(lhs) *= rhs; } FPS& operator*=(const mint& rhs) { mintx8 y = rhs; for (auto& x : v) { x *= y; } return *this; } friend FPS operator*(const FPS& lhs, const mint& rhs) { return FPS(lhs) *= rhs; } FPS diff() const { if (size() == 0) return FPS(); std::vector<mint> res = to_vec(); for (int i = 1; i < int(size()); i++) res[i - 1] = res[i] * i; res.pop_back(); return FPS(res); } FPS inte() const { std::vector<mint> res = to_vec(); res.push_back(mint(0)); for (int i = int(size()); i >= 1; i--) res[i] = res[i - 1] * yosupo::inv<mint>(i); res[0] = mint(0); return FPS(res); } FPS inv(int n) const { assert(size() >= 1); auto naive_conv = [&](mintx8 l, mintx8 r) { auto lv = l.to_array(); auto rv = r.to_array(); std::array<mint, 8> z; for (int i = 0; i < 8; i++) { for (int j = 0; i + j < 8; j++) { z[i + j] += lv[i] * rv[j]; } } return mintx8(z); }; mint if0 = freq(0).inv(); mintx8 one; one.set(0, 1); mintx8 x = one - v[0] * if0; mintx8 x2 = naive_conv(x, x); mintx8 d0 = naive_conv(naive_conv(one + x, one + x2), one + naive_conv(x2, x2)); std::vector<mintx8> res = {d0 * if0}; for (int d = 8; d < n; d *= 2) { // res <- (2 * res - res * res * pre(2 * d)).pre(2 * d) mint i2 = mint(2 * d).inv(); std::vector<mintx8> buf1(2 * d / 8); copy_n(v.begin(), std::min(int(v.size()), 2 * d / 8), buf1.begin()); std::vector<mintx8> buf2 = res; buf2.resize(2 * d / 8); butterfly(buf1); butterfly(buf2); for (int i = 0; i < 2 * d / 8; i++) { buf1[i] *= buf2[i]; } butterfly_inv(buf1); for (int i = 0; i < 2 * d / 8; i++) { buf1[i] *= i2; } for (int i = 0; i < d / 8; i++) { buf1[i] = mintx8(); } butterfly(buf1); for (int i = 0; i < 2 * d / 8; i++) { buf1[i] *= buf2[i]; } butterfly_inv(buf1); for (int i = 0; i < 2 * d / 8; i++) { buf1[i] *= i2; } res.resize(2 * d / 8); for (int i = d / 8; i < 2 * d / 8; i++) { res[i] = -buf1[i]; } } return FPS(int(res.size() * 8), res).pre(n); } FPS exp(int n) const { assert(freq(0) == 0); FPS f({1}), g({1}); for (int i = 1; i < n; i *= 2) { g = (g * mint(2) - f * g * g).pre(i); FPS q = diff().pre(i - 1); FPS w = (q + g * (f.diff() - f * q)).pre(2 * i - 1); f = (f + f * (*this - w.inte()).pre(2 * i)).pre(2 * i); } return f.pre(n); } FPS log(int n) const { assert(freq(0) == 1); auto f = pre(n); return (f.diff() * f.inv(n - 1)).pre(n - 1).inte(); } std::vector<mint> to_vec() const { std::vector<mint> res(_size); for (int i = 0; i < (_size + 7) / 8; i++) { auto _v = v[i].to_array(); for (int j = 0; j < 8 && (i * 8 + j) < _size; j++) { res[i * 8 + j] = _v[j]; } } return res; } private: int _size; std::vector<mintx8> v; FPS(const int n, const std::vector<mintx8>& _v) : _size(n), v(_v) { assert((n + 7) / 8 == int(v.size())); } size_t size8() const { return (_size + 7) / 8; } }; } // namespace yosupo #line 9 "test-oj/simd_log.test.cpp" yosupo::Scanner sc(stdin); yosupo::Printer pr(stdout); using mint = yosupo::modint998244353; int n, m, a[100000], b[100000], c[100000]; int main() { sc.read(n, m); for (int i = 0; i < n; i++) sc.read(a[i], b[i], c[i]); yosupo::FPS<998244353> f; mint aa = 1; for (int i = 0; i < n; i++) f += yosupo::FPS<998244353>({1, mint(b[i]) / a[i]}).log(m+1) * c[i], aa *= mint(a[i]).pow(c[i]); f = f.exp(m+1) * aa; for (auto e : f.to_vec()) pr.writeln(e.val()); }