結果
問題 |
No.1251 絶対に間違ってはいけない最小化問題
|
ユーザー |
![]() |
提出日時 | 2022-03-08 11:19:31 |
言語 | PyPy3 (7.3.15) |
結果 |
WA
|
実行時間 | - |
コード長 | 2,025 bytes |
コンパイル時間 | 536 ms |
コンパイル使用メモリ | 82,388 KB |
実行使用メモリ | 126,936 KB |
最終ジャッジ日時 | 2024-07-23 10:44:22 |
合計ジャッジ時間 | 8,345 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 WA * 1 |
other | AC * 14 WA * 1 TLE * 1 -- * 26 |
ソースコード
''' 三分探索の抽象化ライブラリ domain:= 定義域が整数(0)or実数(1) searchtype:= 狭義に凹で最大値を求めたい(0)or狭義に凸で最小値を求めたい(1) f:= 最大または最小にしたい値を返す l,r:= 探索範囲(l<=r) eps:= 誤差(整数なら2,実数なら誤差指定による) iter:= 探索回数 op1:= 割り算の演算子 op2:= 反転させるかどうか(0の時反転) op3:= 出力での反転 value:= 三分探索の解 args:= fの引数(iterable)…f(i,args)という形でargsを展開 ''' from operator import floordiv,truediv,truth,not_ from math import log from unicodedata import decimal class ternary_search: def __init__(self,domain,searchtype,f,l,r,eps,args=None): self.domain=domain self.searchtype=searchtype self.f=f self.l,self.r=l,r self.iter=int(log((r+1-l)/eps,1.5))+5 self.args=args self.op1=[floordiv,truediv][domain] self.op2=[not_,truth][searchtype] self.op3=[max,min][searchtype] self.value=self.calc() def calc(self): for _ in range(self.iter): diff=self.op1(self.r-self.l,3) trisection1=self.l+diff trisection2=self.r-diff trisection1_value=self.f(trisection1,self.args) trisection2_value=self.f(trisection2,self.args) if self.op2(trisection1_value<=trisection2_value): self.r=trisection2 if self.op2(trisection1_value>=trisection2_value): self.l=trisection1 return self.op3([self.l,self.l+self.op1(self.r-self.l,2),self.r],key=lambda x:self.f(x,self.args)) N = int(input()) A = list(map(int, input().split())) B = list(map(int, input().split())) for i in range(N): A[i]*=10**20 X = 0 def f(x,arg): global X X = x ret=0 for i in range(N): ret+=B[i]*abs(A[i]-x) return ret import decimal e=ternary_search(0,1,f,-10**40,10**40,2) print(X/decimal.Decimal(10**20),(f(e.value,None)+100)//10**20)