結果
| 問題 |
No.1875 Flip Cards
|
| コンテスト | |
| ユーザー |
heno239
|
| 提出日時 | 2022-03-12 11:59:17 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 9,750 bytes |
| コンパイル時間 | 3,751 ms |
| コンパイル使用メモリ | 191,836 KB |
| 最終ジャッジ日時 | 2025-01-28 09:16:20 |
|
ジャッジサーバーID (参考情報) |
judge1 / judge6 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | WA * 3 |
| other | WA * 7 |
ソースコード
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#include<iostream>
#include<string>
#include<cstdio>
#include<vector>
#include<cmath>
#include<algorithm>
#include<functional>
#include<iomanip>
#include<queue>
#include<ciso646>
#include<random>
#include<map>
#include<set>
#include<bitset>
#include<stack>
#include<unordered_map>
#include<unordered_set>
#include<utility>
#include<cassert>
#include<complex>
#include<numeric>
#include<array>
#include<chrono>
using namespace std;
//#define int long long
typedef long long ll;
typedef unsigned long long ul;
typedef unsigned int ui;
constexpr ll mod = 998244353;
//constexpr ll mod = 1000000007;
const ll INF = mod * mod;
typedef pair<int, int>P;
#define rep(i,n) for(int i=0;i<n;i++)
#define per(i,n) for(int i=n-1;i>=0;i--)
#define Rep(i,sta,n) for(int i=sta;i<n;i++)
#define rep1(i,n) for(int i=1;i<=n;i++)
#define per1(i,n) for(int i=n;i>=1;i--)
#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)
#define all(v) (v).begin(),(v).end()
typedef pair<ll, ll> LP;
template<typename T>
void chmin(T& a, T b) {
a = min(a, b);
}
template<typename T>
void chmax(T& a, T b) {
a = max(a, b);
}
template<typename T>
void cinarray(vector<T>& v) {
rep(i, v.size())cin >> v[i];
}
template<typename T>
void coutarray(vector<T>& v) {
rep(i, v.size()) {
if (i > 0)cout << " "; cout << v[i];
}
cout << "\n";
}
ll mod_pow(ll x, ll n, ll m = mod) {
if (n < 0) {
ll res = mod_pow(x, -n, m);
return mod_pow(res, m - 2, m);
}
if (abs(x) >= m)x %= m;
if (x < 0)x += m;
//if (x == 0)return 0;
ll res = 1;
while (n) {
if (n & 1)res = res * x % m;
x = x * x % m; n >>= 1;
}
return res;
}
struct modint {
int n;
modint() :n(0) { ; }
modint(ll m) {
if (m < 0 || mod <= m) {
m %= mod; if (m < 0)m += mod;
}
n = m;
}
operator int() { return n; }
};
bool operator==(modint a, modint b) { return a.n == b.n; }
modint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; }
modint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; }
modint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; }
modint operator+(modint a, modint b) { return a += b; }
modint operator-(modint a, modint b) { return a -= b; }
modint operator*(modint a, modint b) { return a *= b; }
modint operator^(modint a, ll n) {
if (n == 0)return modint(1);
modint res = (a * a) ^ (n / 2);
if (n % 2)res = res * a;
return res;
}
ll inv(ll a, ll p) {
return (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);
}
modint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }
modint operator/=(modint& a, modint b) { a = a / b; return a; }
const int max_n = 1 << 20;
modint fact[max_n], factinv[max_n];
void init_f() {
fact[0] = modint(1);
for (int i = 0; i < max_n - 1; i++) {
fact[i + 1] = fact[i] * modint(i + 1);
}
factinv[max_n - 1] = modint(1) / fact[max_n - 1];
for (int i = max_n - 2; i >= 0; i--) {
factinv[i] = factinv[i + 1] * modint(i + 1);
}
}
modint comb(int a, int b) {
if (a < 0 || b < 0 || a < b)return 0;
return fact[a] * factinv[b] * factinv[a - b];
}
modint combP(int a, int b) {
if (a < 0 || b < 0 || a < b)return 0;
return fact[a] * factinv[a - b];
}
ll gcd(ll a, ll b) {
a = abs(a); b = abs(b);
if (a < b)swap(a, b);
while (b) {
ll r = a % b; a = b; b = r;
}
return a;
}
typedef long double ld;
typedef pair<ld, ld> LDP;
const ld eps = 1e-8;
const ld pi = acosl(-1.0);
template<typename T>
void addv(vector<T>& v, int loc, T val) {
if (loc >= v.size())v.resize(loc + 1, 0);
v[loc] += val;
}
/*const int mn = 100005;
bool isp[mn];
vector<int> ps;
void init() {
fill(isp + 2, isp + mn, true);
for (int i = 2; i < mn; i++) {
if (!isp[i])continue;
ps.push_back(i);
for (int j = 2 * i; j < mn; j += i) {
isp[j] = false;
}
}
}*/
//[,val)
template<typename T>
auto prev_itr(set<T>& st, T val) {
auto res = st.lower_bound(val);
if (res == st.begin())return st.end();
res--; return res;
}
//[val,)
template<typename T>
auto next_itr(set<T>& st, T val) {
auto res = st.lower_bound(val);
return res;
}
using mP = pair<modint, modint>;
int dx[4] = { 1,0,-1,0 };
int dy[4] = { 0,1,0,-1 };
//-----------------------------------------
int get_premitive_root() {
int primitive_root = 0;
if (!primitive_root) {
primitive_root = [&]() {
set<int> fac;
int v = mod - 1;
for (ll i = 2; i * i <= v; i++) while (v % i == 0) fac.insert(i), v /= i;
if (v > 1) fac.insert(v);
for (int g = 1; g < mod; g++) {
bool ok = true;
for (auto i : fac) if (mod_pow(g, (mod - 1) / i) == 1) { ok = false; break; }
if (ok) return g;
}
return -1;
}();
}
return primitive_root;
}
const int proot = get_premitive_root();
typedef vector <modint> poly;
void dft(poly& f, bool inverse = false) {
int n = f.size(); if (n == 1)return;
static poly w{ 1 }, iw{ 1 };
for (int m = w.size(); m < n / 2; m *= 2) {
modint dw = mod_pow(proot, (mod - 1) / (4 * m)), dwinv = (modint)1 / dw;
w.resize(m * 2); iw.resize(m * 2);
for (int i = 0; i < m; i++)w[m + i] = w[i] * dw, iw[m + i] = iw[i] * dwinv;
}
if (!inverse) {
for (int m = n; m >>= 1;) {
for (int s = 0, k = 0; s < n; s += 2 * m, k++) {
for (int i = s; i < s + m; i++) {
modint x = f[i], y = f[i + m] * w[k];
f[i] = x + y, f[i + m] = x - y;
}
}
}
}
else {
for (int m = 1; m < n; m *= 2) {
for (int s = 0, k = 0; s < n; s += 2 * m, k++) {
for (int i = s; i < s + m; i++) {
modint x = f[i], y = f[i + m];
f[i] = x + y, f[i + m] = (x - y) * iw[k];
}
}
}
modint n_inv = (modint)1 / (modint)n;
for (modint& v : f)v *= n_inv;
}
}
poly multiply(poly g, poly h) {
int n = 1;
int pi = 0, qi = 0;
rep(i, g.size())if (g[i])pi = i;
rep(i, h.size())if (h[i])qi = i;
int sz = pi + qi + 2;
while (n < sz)n *= 2;
g.resize(n); h.resize(n);
dft(g); dft(h);
rep(i, n) {
g[i] *= h[i];
}
dft(g, true);
return g;
}
struct FormalPowerSeries :vector<modint> {
using vector<modint>::vector;
using fps = FormalPowerSeries;
void shrink() {
while (this->size() && this->back() == (modint)0)this->pop_back();
}
fps operator+(const fps& r)const { return fps(*this) += r; }
fps operator+(const modint& v)const { return fps(*this) += v; }
fps operator-(const fps& r)const { return fps(*this) -= r; }
fps operator-(const modint& v)const { return fps(*this) -= v; }
fps operator*(const fps& r)const { return fps(*this) *= r; }
fps operator*(const modint& v)const { return fps(*this) *= v; }
fps& operator+=(const fps& r) {
if (r.size() > this->size())this->resize(r.size());
rep(i, r.size())(*this)[i] += r[i];
shrink();
return *this;
}
fps& operator+=(const modint& v) {
if (this->empty())this->resize(1);
(*this)[0] += v;
shrink();
return *this;
}
fps& operator-=(const fps& r) {
if (r.size() > this->size())this->resize(r.size());
rep(i, r.size())(*this)[i] -= r[i];
shrink();
return *this;
}
fps& operator-=(const modint& v) {
if (this->empty())this->resize(1);
(*this)[0] -= v;
shrink();
return *this;
}
fps& operator*=(const fps& r) {
if (this->empty() || r.empty())this->clear();
else {
poly ret = multiply(*this, r);
*this = fps(all(ret));
}
return *this;
}
fps& operator*=(const modint& v) {
for (auto& x : (*this))x *= v;
shrink();
return *this;
}
fps operator-()const {
fps ret = *this;
for (auto& v : ret)v = -v;
return ret;
}
fps pre(int sz)const {
fps ret(this->begin(), this->begin() + min((int)this->size(), sz));
ret.shrink();
return ret;
}
fps integral() const {
const int n = (int)this->size();
fps ret(n + 1);
ret[0] = 0;
for (int i = 0; i < n; i++) ret[i + 1] = (*this)[i] / (modint)(i + 1);
return ret;
}
fps inv(int deg = -1)const {
const int n = this->size();
if (deg == -1)deg = n;
fps ret({ (modint)1 / (*this)[0] });
for (int i = 1; i < deg; i <<= 1) {
ret = (ret + ret - ret * ret * pre(i << 1)).pre(i << 1);
}
ret = ret.pre(deg);
ret.shrink();
return ret;
}
fps diff() const {
const int n = (int)this->size();
fps ret(max(0, n - 1));
for (int i = 1; i < n; i++) ret[i - 1] = (*this)[i] * (modint)i;
return ret;
}
// F(0) must be 1
fps log(int deg = -1) const {
assert((*this)[0] == 1);
const int n = (int)this->size();
if (deg == -1) deg = n;
return (this->diff() * this->inv(deg)).pre(deg - 1).integral();
}
// F(0) must be 0
fps exp(int deg = -1)const {
assert((*this)[0] == 0);
const int n = (int)this->size();
if (deg == -1)deg = n;
fps ret = { 1 };
for (int i = 1; i < deg; i <<= 1) {
ret = (ret * (pre(i << 1) + 1 - ret.log(i << 1))).pre(i << 1);
}
//cout << "!!!! " << ret.size() << "\n";
return ret.pre(deg);
}
};
using fps = FormalPowerSeries;
using pfps = pair<fps, fps>;
void solve() {
int n, m; cin >> n >> m;
vector<int> a(n), b(n), c(n);
rep(i, n)cin >> a[i] >> b[i] >> c[i];
vector<modint> r(n);
rep(i, n)r[i] = (modint)b[i] / (modint)a[i];
vector<pfps> vp;
rep(i, n) {
vp.push_back({ {c[i]},{1,-r[i]} });
}
while (vp.size() > 1) {
vector<pfps> nvp;
rep(i, vp.size() / 2) {
int a = 2 * i;
int b = 2 * i + 1;
pfps cur;
cur.second = vp[a].second * vp[b].second;
cur.first = vp[a].first * vp[b].second + vp[b].first * vp[a].second;
nvp.push_back(cur);
}
if (vp.size() % 2)nvp.push_back(vp.back());
swap(vp, nvp);
}
fps coef = vp[0].first * (vp[0].second.inv());
coef.resize(m + 1);
coef[0] = 0;
rep1(i, m) {
coef[i] *= factinv[i];
if (i % 2 == 0)coef[i] *= -1;
}
coef = coef.exp();
}
signed main() {
ios::sync_with_stdio(false);
cin.tie(0);
cout << fixed << setprecision(10);
init_f();
//init();
//while(true)
//useexpr();
//int t; cin >> t; rep(i, t)
solve();
return 0;
}
heno239