結果

問題 No.1800 Random XOR
ユーザー manta1130manta1130
提出日時 2022-03-14 21:34:17
言語 Rust
(1.77.0 + proconio)
結果
AC  
実行時間 1 ms / 2,000 ms
コード長 29,124 bytes
コンパイル時間 13,638 ms
コンパイル使用メモリ 378,320 KB
実行使用メモリ 5,376 KB
最終ジャッジ日時 2024-09-21 09:45:41
合計ジャッジ時間 14,697 ms
ジャッジサーバーID
(参考情報)
judge2 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
5,248 KB
testcase_01 AC 1 ms
5,248 KB
testcase_02 AC 1 ms
5,248 KB
testcase_03 AC 1 ms
5,376 KB
testcase_04 AC 1 ms
5,376 KB
testcase_05 AC 1 ms
5,376 KB
testcase_06 AC 1 ms
5,376 KB
testcase_07 AC 1 ms
5,376 KB
testcase_08 AC 1 ms
5,376 KB
testcase_09 AC 1 ms
5,376 KB
testcase_10 AC 1 ms
5,376 KB
testcase_11 AC 1 ms
5,376 KB
testcase_12 AC 1 ms
5,376 KB
testcase_13 AC 1 ms
5,376 KB
testcase_14 AC 1 ms
5,376 KB
testcase_15 AC 1 ms
5,376 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
warning: unused variable: `n`
  --> src/main.rs:9:9
   |
9  |         n:u64,m:u64,
   |         ^
   |
help: `n` is captured in macro and introduced a unused variable
  --> src/main.rs:50:17
   |
8  | /     inputv! {
9  | |         n:u64,m:u64,
10 | |     }
   | |_____- in this macro invocation
...
50 |               let $x: $t = buf_split_result.parse().unwrap();
   |                   ^^
   = note: `#[warn(unused_variables)]` on by default
   = note: this warning originates in the macro `input_internal` which comes from the expansion of the macro `inputv` (in Nightly builds, run with -Z macro-backtrace for more info)

warning: fields `sum_e` and `sum_ie` are never read
   --> src/main.rs:467:20
    |
466 |     pub struct ButterflyCache<M> {
    |                -------------- fields in this struct
467 |         pub(crate) sum_e: Vec<StaticModInt<M>>,
    |                    ^^^^^
468 |         pub(crate) sum_ie: Vec<StaticModInt<M>>,
    |                    ^^^^^^
    |
    = note: `#[warn(dead_code)]` on by default

ソースコード

diff #

#[allow(unused_imports)]
use std::io::{stdout, BufWriter, Write};

fn main() {
    let out = stdout();
    let mut out = BufWriter::new(out.lock());

    inputv! {
        n:u64,m:u64,
    }

    let mut ans = ModInt1000000007::new(2).pow(m) - 1;
    ans = ans * (ans + 1) / 2;
    ans = ans / ModInt1000000007::new(2).pow(m);
    writeln!(out, "{}", ans).unwrap();
}

//https://github.com/rust-lang-ja/ac-library-rs
//https://github.com/manta1130/competitive-template-rs

use input::*;
use modint::*;

pub mod input {
    use std::cell::RefCell;
    use std::io;
    pub const SPLIT_DELIMITER: char = ' ';
    pub use std::io::prelude::*;

    thread_local! {
        pub static INPUT_BUFFER:RefCell<std::collections::VecDeque<String>>=RefCell::new(std::collections::VecDeque::new());
    }

    #[macro_export]
    macro_rules! input_internal {
        ($x:ident : $t:ty) => {
            INPUT_BUFFER.with(|p| {
                while p.borrow().len() == 0 {
                    let temp_str = input_line_str();
                    let mut split_result_iter = temp_str
                        .split(SPLIT_DELIMITER)
                        .map(|q| q.to_string())
                        .filter(|q| q.len() > 0)
                        .collect::<std::collections::VecDeque<_>>();
                    p.borrow_mut().append(&mut split_result_iter)
                }
            });
            let mut buf_split_result = String::new();
            INPUT_BUFFER.with(|p| buf_split_result = p.borrow_mut().pop_front().unwrap());
            let $x: $t = buf_split_result.parse().unwrap();
        };
        (mut $x:ident : $t:ty) => {
            INPUT_BUFFER.with(|p| {
                while p.borrow().len() == 0 {
                    let temp_str = input_line_str();
                    let mut split_result_iter = temp_str
                        .split(SPLIT_DELIMITER)
                        .map(|q| q.to_string())
                        .filter(|q| q.len() > 0)
                        .collect::<std::collections::VecDeque<_>>();
                    p.borrow_mut().append(&mut split_result_iter)
                }
            });
            let mut buf_split_result = String::new();
            INPUT_BUFFER.with(|p| buf_split_result = p.borrow_mut().pop_front().unwrap());
            let mut $x: $t = buf_split_result.parse().unwrap();
        };
    }

    pub fn input_buffer_is_empty() -> bool {
        let mut empty = false;
        INPUT_BUFFER.with(|p| {
            if p.borrow().len() == 0 {
                empty = true;
            }
        });
        empty
    }

    #[macro_export]
    macro_rules! inputv {
    ($i:ident : $t:ty) => {
        input_internal!{$i : $t}
    };
    (mut $i:ident : $t:ty) => {
        input_internal!{mut $i : $t}
    };
    ($i:ident : $t:ty $(,)*) => {
            input_internal!{$i : $t}
    };
    (mut $i:ident : $t:ty $(,)*) => {
            input_internal!{mut $i : $t}
    };
    (mut $i:ident : $t:ty,$($q:tt)*) => {
            input_internal!{mut $i : $t}
            inputv!{$($q)*}
    };
    ($i:ident : $t:ty,$($q:tt)*) => {
            input_internal!{$i : $t}
            inputv!{$($q)*}
    };
}

    pub fn input_all() {
        INPUT_BUFFER.with(|p| {
            if p.borrow().len() == 0 {
                let mut temp_str = String::new();
                std::io::stdin().read_to_string(&mut temp_str).unwrap();
                let mut split_result_iter = temp_str
                    .split_whitespace()
                    .map(|q| q.to_string())
                    .collect::<std::collections::VecDeque<_>>();
                p.borrow_mut().append(&mut split_result_iter)
            }
        });
    }

    pub fn input_line_str() -> String {
        let mut s = String::new();
        io::stdin().read_line(&mut s).unwrap();
        s.trim().to_string()
    }

    #[allow(clippy::match_wild_err_arm)]
    pub fn input_vector<T>() -> Vec<T>
    where
        T: std::str::FromStr,
    {
        let mut v: Vec<T> = Vec::new();

        let s = input_line_str();
        let split_result = s.split(SPLIT_DELIMITER);
        for z in split_result {
            let buf = match z.parse() {
                Ok(r) => r,
                Err(_) => panic!("Parse Error",),
            };
            v.push(buf);
        }
        v
    }

    #[allow(clippy::match_wild_err_arm)]
    pub fn input_vector_row<T>(n: usize) -> Vec<T>
    where
        T: std::str::FromStr,
    {
        let mut v = Vec::with_capacity(n);
        for _ in 0..n {
            let buf = match input_line_str().parse() {
                Ok(r) => r,
                Err(_) => panic!("Parse Error",),
            };
            v.push(buf);
        }
        v
    }

    pub trait ToCharVec {
        fn to_charvec(&self) -> Vec<char>;
    }

    impl ToCharVec for String {
        fn to_charvec(&self) -> Vec<char> {
            self.to_string().chars().collect::<Vec<_>>()
        }
    }
}
pub mod internal_math {
    #![allow(dead_code)]
    use std::mem::swap;

    /* const */
    pub(crate) fn safe_mod(mut x: i64, m: i64) -> i64 {
        x %= m;
        if x < 0 {
            x += m;
        }
        x
    }

    pub(crate) struct Barrett {
        pub(crate) _m: u32,
        pub(crate) im: u64,
    }

    impl Barrett {
        pub(crate) fn new(m: u32) -> Barrett {
            Barrett {
                _m: m,
                im: (-1i64 as u64 / m as u64).wrapping_add(1),
            }
        }

        pub(crate) fn umod(&self) -> u32 {
            self._m
        }

        #[allow(clippy::many_single_char_names)]
        pub(crate) fn mul(&self, a: u32, b: u32) -> u32 {
            mul_mod(a, b, self._m, self.im)
        }
    }

    #[allow(clippy::many_single_char_names)]
    pub(crate) fn mul_mod(a: u32, b: u32, m: u32, im: u64) -> u32 {
        let mut z = a as u64;
        z *= b as u64;
        let x = (((z as u128) * (im as u128)) >> 64) as u64;
        let mut v = z.wrapping_sub(x.wrapping_mul(m as u64)) as u32;
        if m <= v {
            v = v.wrapping_add(m);
        }
        v
    }

    /* const */
    #[allow(clippy::many_single_char_names)]
    pub(crate) fn pow_mod(x: i64, mut n: i64, m: i32) -> i64 {
        if m == 1 {
            return 0;
        }
        let _m = m as u32;
        let mut r: u64 = 1;
        let mut y: u64 = safe_mod(x, m as i64) as u64;
        while n != 0 {
            if (n & 1) > 0 {
                r = (r * y) % (_m as u64);
            }
            y = (y * y) % (_m as u64);
            n >>= 1;
        }
        r as i64
    }

    /* const */
    pub(crate) fn is_prime(n: i32) -> bool {
        let n = n as i64;
        match n {
            _ if n <= 1 => return false,
            2 | 7 | 61 => return true,
            _ if n % 2 == 0 => return false,
            _ => {}
        }
        let mut d = n - 1;
        while d % 2 == 0 {
            d /= 2;
        }
        for &a in &[2, 7, 61] {
            let mut t = d;
            let mut y = pow_mod(a, t, n as i32);
            while t != n - 1 && y != 1 && y != n - 1 {
                y = y * y % n;
                t <<= 1;
            }
            if y != n - 1 && t % 2 == 0 {
                return false;
            }
        }
        true
    }

    /* const */
    #[allow(clippy::many_single_char_names)]
    pub(crate) fn inv_gcd(a: i64, b: i64) -> (i64, i64) {
        let a = safe_mod(a, b);
        if a == 0 {
            return (b, 0);
        }

        let mut s = b;
        let mut t = a;
        let mut m0 = 0;
        let mut m1 = 1;

        while t != 0 {
            let u = s / t;
            s -= t * u;
            m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b

            swap(&mut s, &mut t);
            swap(&mut m0, &mut m1);
        }
        if m0 < 0 {
            m0 += b / s;
        }
        (s, m0)
    }

    /* const */
    pub(crate) fn primitive_root(m: i32) -> i32 {
        match m {
            2 => return 1,
            167_772_161 => return 3,
            469_762_049 => return 3,
            754_974_721 => return 11,
            998_244_353 => return 3,
            _ => {}
        }

        let mut divs = [0; 20];
        divs[0] = 2;
        let mut cnt = 1;
        let mut x = (m - 1) / 2;
        while x % 2 == 0 {
            x /= 2;
        }
        for i in (3..std::i32::MAX).step_by(2) {
            if i as i64 * i as i64 > x as i64 {
                break;
            }
            if x % i == 0 {
                divs[cnt] = i;
                cnt += 1;
                while x % i == 0 {
                    x /= i;
                }
            }
        }
        if x > 1 {
            divs[cnt] = x;
            cnt += 1;
        }
        let mut g = 2;
        loop {
            if (0..cnt).all(|i| pow_mod(g, ((m - 1) / divs[i]) as i64, m) != 1) {
                break g as i32;
            }
            g += 1;
        }
    }
}
pub mod modint {

    use crate::internal_math;
    use std::{
        cell::RefCell,
        convert::{Infallible, TryInto as _},
        fmt,
        hash::{Hash, Hasher},
        iter::{Product, Sum},
        marker::PhantomData,
        ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign},
        str::FromStr,
        sync::atomic::{self, AtomicU32, AtomicU64},
        thread::LocalKey,
    };

    pub type ModInt1000000007 = StaticModInt<Mod1000000007>;
    pub type ModInt998244353 = StaticModInt<Mod998244353>;
    pub type ModInt = DynamicModInt<DefaultId>;

    #[derive(Copy, Clone, Eq, PartialEq)]
    #[repr(transparent)]
    pub struct StaticModInt<M> {
        val: u32,
        phantom: PhantomData<fn() -> M>,
    }

    impl<M: Modulus> StaticModInt<M> {
        #[inline(always)]
        pub fn modulus() -> u32 {
            M::VALUE
        }

        #[inline]
        pub fn new<T: RemEuclidU32>(val: T) -> Self {
            Self::raw(val.rem_euclid_u32(M::VALUE))
        }

        #[inline]
        pub fn raw(val: u32) -> Self {
            Self {
                val,
                phantom: PhantomData,
            }
        }

        #[inline]
        pub fn val(self) -> u32 {
            self.val
        }

        #[inline]
        pub fn pow(self, n: u64) -> Self {
            <Self as ModIntBase>::pow(self, n)
        }

        #[inline]
        pub fn inv(self) -> Self {
            if M::HINT_VALUE_IS_PRIME {
                if self.val() == 0 {
                    panic!("attempt to divide by zero");
                }
                debug_assert!(
                    internal_math::is_prime(M::VALUE.try_into().unwrap()),
                    "{} is not a prime number",
                    M::VALUE,
                );
                self.pow((M::VALUE - 2).into())
            } else {
                Self::inv_for_non_prime_modulus(self)
            }
        }
    }

    impl<M: Modulus> ModIntBase for StaticModInt<M> {
        #[inline(always)]
        fn modulus() -> u32 {
            Self::modulus()
        }

        #[inline]
        fn raw(val: u32) -> Self {
            Self::raw(val)
        }

        #[inline]
        fn val(self) -> u32 {
            self.val()
        }

        #[inline]
        fn inv(self) -> Self {
            self.inv()
        }
    }

    pub trait Modulus: 'static + Copy + Eq {
        const VALUE: u32;
        const HINT_VALUE_IS_PRIME: bool;

        fn butterfly_cache() -> &'static LocalKey<RefCell<Option<ButterflyCache<Self>>>>;
    }

    #[derive(Copy, Clone, Ord, PartialOrd, Eq, PartialEq, Hash, Debug)]
    pub enum Mod1000000007 {}

    impl Modulus for Mod1000000007 {
        const VALUE: u32 = 1_000_000_007;
        const HINT_VALUE_IS_PRIME: bool = true;

        fn butterfly_cache() -> &'static LocalKey<RefCell<Option<ButterflyCache<Self>>>> {
            thread_local! {
                static BUTTERFLY_CACHE: RefCell<Option<ButterflyCache<Mod1000000007>>> = RefCell::default();
            }
            &BUTTERFLY_CACHE
        }
    }

    #[derive(Copy, Clone, Ord, PartialOrd, Eq, PartialEq, Hash, Debug)]
    pub enum Mod998244353 {}

    impl Modulus for Mod998244353 {
        const VALUE: u32 = 998_244_353;
        const HINT_VALUE_IS_PRIME: bool = true;

        fn butterfly_cache() -> &'static LocalKey<RefCell<Option<ButterflyCache<Self>>>> {
            thread_local! {
                static BUTTERFLY_CACHE: RefCell<Option<ButterflyCache<Mod998244353>>> = RefCell::default();
            }
            &BUTTERFLY_CACHE
        }
    }

    pub struct ButterflyCache<M> {
        pub(crate) sum_e: Vec<StaticModInt<M>>,
        pub(crate) sum_ie: Vec<StaticModInt<M>>,
    }

    #[derive(Copy, Clone, Eq, PartialEq)]
    #[repr(transparent)]
    pub struct DynamicModInt<I> {
        val: u32,
        phantom: PhantomData<fn() -> I>,
    }

    impl<I: Id> DynamicModInt<I> {
        #[inline]
        pub fn modulus() -> u32 {
            I::companion_barrett().umod()
        }

        #[inline]
        pub fn set_modulus(modulus: u32) {
            if modulus == 0 {
                panic!("the modulus must not be 0");
            }
            I::companion_barrett().update(modulus);
        }

        #[inline]
        pub fn new<T: RemEuclidU32>(val: T) -> Self {
            <Self as ModIntBase>::new(val)
        }

        #[inline]
        pub fn raw(val: u32) -> Self {
            Self {
                val,
                phantom: PhantomData,
            }
        }

        #[inline]
        pub fn val(self) -> u32 {
            self.val
        }

        #[inline]
        pub fn pow(self, n: u64) -> Self {
            <Self as ModIntBase>::pow(self, n)
        }

        #[inline]
        pub fn inv(self) -> Self {
            Self::inv_for_non_prime_modulus(self)
        }
    }

    impl<I: Id> ModIntBase for DynamicModInt<I> {
        #[inline]
        fn modulus() -> u32 {
            Self::modulus()
        }

        #[inline]
        fn raw(val: u32) -> Self {
            Self::raw(val)
        }

        #[inline]
        fn val(self) -> u32 {
            self.val()
        }

        #[inline]
        fn inv(self) -> Self {
            self.inv()
        }
    }

    pub trait Id: 'static + Copy + Eq {
        fn companion_barrett() -> &'static Barrett;
    }

    #[derive(Copy, Clone, Ord, PartialOrd, Eq, PartialEq, Hash, Debug)]
    pub enum DefaultId {}

    impl Id for DefaultId {
        fn companion_barrett() -> &'static Barrett {
            static BARRETT: Barrett = Barrett::default();
            &BARRETT
        }
    }

    pub struct Barrett {
        m: AtomicU32,
        im: AtomicU64,
    }

    impl Barrett {
        #[inline]
        pub const fn new(m: u32) -> Self {
            Self {
                m: AtomicU32::new(m),
                im: AtomicU64::new((-1i64 as u64 / m as u64).wrapping_add(1)),
            }
        }

        #[inline]
        const fn default() -> Self {
            Self::new(998_244_353)
        }

        #[inline]
        fn update(&self, m: u32) {
            let im = (-1i64 as u64 / m as u64).wrapping_add(1);
            self.m.store(m, atomic::Ordering::SeqCst);
            self.im.store(im, atomic::Ordering::SeqCst);
        }

        #[inline]
        fn umod(&self) -> u32 {
            self.m.load(atomic::Ordering::SeqCst)
        }

        #[inline]
        fn mul(&self, a: u32, b: u32) -> u32 {
            let m = self.m.load(atomic::Ordering::SeqCst);
            let im = self.im.load(atomic::Ordering::SeqCst);
            internal_math::mul_mod(a, b, m, im)
        }
    }

    impl Default for Barrett {
        #[inline]
        fn default() -> Self {
            Self::default()
        }
    }

    pub trait ModIntBase:
        Default
        + FromStr
        + From<i8>
        + From<i16>
        + From<i32>
        + From<i64>
        + From<i128>
        + From<isize>
        + From<u8>
        + From<u16>
        + From<u32>
        + From<u64>
        + From<u128>
        + From<usize>
        + Copy
        + Eq
        + Hash
        + fmt::Display
        + fmt::Debug
        + Neg<Output = Self>
        + Add<Output = Self>
        + Sub<Output = Self>
        + Mul<Output = Self>
        + Div<Output = Self>
        + AddAssign
        + SubAssign
        + MulAssign
        + DivAssign
    {
        fn modulus() -> u32;

        fn raw(val: u32) -> Self;

        fn val(self) -> u32;

        fn inv(self) -> Self;

        #[inline]
        fn new<T: RemEuclidU32>(val: T) -> Self {
            Self::raw(val.rem_euclid_u32(Self::modulus()))
        }

        #[inline]
        fn pow(self, mut n: u64) -> Self {
            let mut x = self;
            let mut r = Self::raw(1);
            while n > 0 {
                if n & 1 == 1 {
                    r *= x;
                }
                x *= x;
                n >>= 1;
            }
            r
        }
    }

    pub trait RemEuclidU32 {
        fn rem_euclid_u32(self, modulus: u32) -> u32;
    }

    macro_rules! impl_rem_euclid_u32_for_small_signed {
    ($($ty:tt),*) => {
        $(
            impl RemEuclidU32 for $ty {
                #[inline]
                fn rem_euclid_u32(self, modulus: u32) -> u32 {
                    (self as i64).rem_euclid(i64::from(modulus)) as _
                }
            }
        )*
    }
}

    impl_rem_euclid_u32_for_small_signed!(i8, i16, i32, i64, isize);

    impl RemEuclidU32 for i128 {
        #[inline]
        fn rem_euclid_u32(self, modulus: u32) -> u32 {
            self.rem_euclid(i128::from(modulus)) as _
        }
    }

    macro_rules! impl_rem_euclid_u32_for_small_unsigned {
    ($($ty:tt),*) => {
        $(
            impl RemEuclidU32 for $ty {
                #[inline]
                fn rem_euclid_u32(self, modulus: u32) -> u32 {
                    self as u32 % modulus
                }
            }
        )*
    }
}

    macro_rules! impl_rem_euclid_u32_for_large_unsigned {
    ($($ty:tt),*) => {
        $(
            impl RemEuclidU32 for $ty {
                #[inline]
                fn rem_euclid_u32(self, modulus: u32) -> u32 {
                    (self % (modulus as $ty)) as _
                }
            }
        )*
    }
}

    impl_rem_euclid_u32_for_small_unsigned!(u8, u16, u32);
    impl_rem_euclid_u32_for_large_unsigned!(u64, u128);

    #[cfg(target_pointer_width = "32")]
    impl_rem_euclid_u32_for_small_unsigned!(usize);

    #[cfg(target_pointer_width = "64")]
    impl_rem_euclid_u32_for_large_unsigned!(usize);

    trait InternalImplementations: ModIntBase {
        #[inline]
        fn inv_for_non_prime_modulus(this: Self) -> Self {
            let (gcd, x) = internal_math::inv_gcd(this.val().into(), Self::modulus().into());
            if gcd != 1 {
                panic!("the multiplicative inverse does not exist");
            }
            Self::new(x)
        }

        #[inline]
        fn default_impl() -> Self {
            Self::raw(0)
        }

        #[inline]
        fn from_str_impl(s: &str) -> Result<Self, Infallible> {
            Ok(s.parse::<i64>()
                .map(Self::new)
                .unwrap_or_else(|_| todo!("parsing as an arbitrary precision integer?")))
        }

        #[inline]
        fn hash_impl(this: &Self, state: &mut impl Hasher) {
            this.val().hash(state)
        }

        #[inline]
        fn display_impl(this: &Self, f: &mut fmt::Formatter) -> fmt::Result {
            fmt::Display::fmt(&this.val(), f)
        }

        #[inline]
        fn debug_impl(this: &Self, f: &mut fmt::Formatter) -> fmt::Result {
            fmt::Debug::fmt(&this.val(), f)
        }

        #[inline]
        fn neg_impl(this: Self) -> Self {
            Self::sub_impl(Self::raw(0), this)
        }

        #[inline]
        fn add_impl(lhs: Self, rhs: Self) -> Self {
            let modulus = Self::modulus();
            let mut val = lhs.val() + rhs.val();
            if val >= modulus {
                val -= modulus;
            }
            Self::raw(val)
        }

        #[inline]
        fn sub_impl(lhs: Self, rhs: Self) -> Self {
            let modulus = Self::modulus();
            let mut val = lhs.val().wrapping_sub(rhs.val());
            if val >= modulus {
                val = val.wrapping_add(modulus)
            }
            Self::raw(val)
        }

        fn mul_impl(lhs: Self, rhs: Self) -> Self;

        #[inline]
        fn div_impl(lhs: Self, rhs: Self) -> Self {
            Self::mul_impl(lhs, rhs.inv())
        }
    }

    impl<M: Modulus> InternalImplementations for StaticModInt<M> {
        #[inline]
        fn mul_impl(lhs: Self, rhs: Self) -> Self {
            Self::raw((u64::from(lhs.val()) * u64::from(rhs.val()) % u64::from(M::VALUE)) as u32)
        }
    }

    impl<I: Id> InternalImplementations for DynamicModInt<I> {
        #[inline]
        fn mul_impl(lhs: Self, rhs: Self) -> Self {
            Self::raw(I::companion_barrett().mul(lhs.val, rhs.val))
        }
    }

    macro_rules! impl_basic_traits {
    () => {};
    (impl <$generic_param:ident : $generic_param_bound:tt> _ for $self:ty; $($rest:tt)*) => {
        impl <$generic_param: $generic_param_bound> Default for $self {
            #[inline]
            fn default() -> Self {
                Self::default_impl()
            }
        }

        impl <$generic_param: $generic_param_bound> FromStr for $self {
            type Err = Infallible;

            #[inline]
            fn from_str(s: &str) -> Result<Self, Infallible> {
                Self::from_str_impl(s)
            }
        }

        impl<$generic_param: $generic_param_bound, V: RemEuclidU32> From<V> for $self {
            #[inline]
            fn from(from: V) -> Self {
                Self::new(from)
            }
        }

        #[allow(clippy::derive_hash_xor_eq)]
        impl<$generic_param: $generic_param_bound> Hash for $self {
            #[inline]
            fn hash<H: Hasher>(&self, state: &mut H) {
                Self::hash_impl(self, state)
            }
        }

        impl<$generic_param: $generic_param_bound> fmt::Display for $self {
            #[inline]
            fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
                Self::display_impl(self, f)
            }
        }

        impl<$generic_param: $generic_param_bound> fmt::Debug for $self {
            #[inline]
            fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
                Self::debug_impl(self, f)
            }
        }

        impl<$generic_param: $generic_param_bound> Neg for $self {
            type Output = $self;

            #[inline]
            fn neg(self) -> $self {
                Self::neg_impl(self)
            }
        }

        impl<$generic_param: $generic_param_bound> Neg for &'_ $self {
            type Output = $self;

            #[inline]
            fn neg(self) -> $self {
                <$self>::neg_impl(*self)
            }
        }

        impl_basic_traits!($($rest)*);
    };
}

    impl_basic_traits! {
        impl <M: Modulus> _ for StaticModInt<M> ;
        impl <I: Id     > _ for DynamicModInt<I>;
    }

    macro_rules! impl_bin_ops {
    () => {};
    (for<$($generic_param:ident : $generic_param_bound:tt),*> <$lhs_ty:ty> ~ <$rhs_ty:ty> -> $output:ty { { $lhs_body:expr } ~ { $rhs_body:expr } } $($rest:tt)*) => {
        impl <$($generic_param: $generic_param_bound),*> Add<$rhs_ty> for $lhs_ty {
            type Output = $output;

            #[inline]
            fn add(self, rhs: $rhs_ty) -> $output {
                <$output>::add_impl(apply($lhs_body, self), apply($rhs_body, rhs))
            }
        }

        impl <$($generic_param: $generic_param_bound),*> Sub<$rhs_ty> for $lhs_ty {
            type Output = $output;

            #[inline]
            fn sub(self, rhs: $rhs_ty) -> $output {
                <$output>::sub_impl(apply($lhs_body, self), apply($rhs_body, rhs))
            }
        }

        impl <$($generic_param: $generic_param_bound),*> Mul<$rhs_ty> for $lhs_ty {
            type Output = $output;

            #[inline]
            fn mul(self, rhs: $rhs_ty) -> $output {
                <$output>::mul_impl(apply($lhs_body, self), apply($rhs_body, rhs))
            }
        }

        impl <$($generic_param: $generic_param_bound),*> Div<$rhs_ty> for $lhs_ty {
            type Output = $output;

            #[inline]
            fn div(self, rhs: $rhs_ty) -> $output {
                <$output>::div_impl(apply($lhs_body, self), apply($rhs_body, rhs))
            }
        }

        impl_bin_ops!($($rest)*);
    };
}

    macro_rules! impl_assign_ops {
    () => {};
    (for<$($generic_param:ident : $generic_param_bound:tt),*> <$lhs_ty:ty> ~= <$rhs_ty:ty> { _ ~= { $rhs_body:expr } } $($rest:tt)*) => {
        impl <$($generic_param: $generic_param_bound),*> AddAssign<$rhs_ty> for $lhs_ty {
            #[inline]
            fn add_assign(&mut self, rhs: $rhs_ty) {
                *self = *self + apply($rhs_body, rhs);
            }
        }

        impl <$($generic_param: $generic_param_bound),*> SubAssign<$rhs_ty> for $lhs_ty {
            #[inline]
            fn sub_assign(&mut self, rhs: $rhs_ty) {
                *self = *self - apply($rhs_body, rhs);
            }
        }

        impl <$($generic_param: $generic_param_bound),*> MulAssign<$rhs_ty> for $lhs_ty {
            #[inline]
            fn mul_assign(&mut self, rhs: $rhs_ty) {
                *self = *self * apply($rhs_body, rhs);
            }
        }

        impl <$($generic_param: $generic_param_bound),*> DivAssign<$rhs_ty> for $lhs_ty {
            #[inline]
            fn div_assign(&mut self, rhs: $rhs_ty) {
                *self = *self / apply($rhs_body, rhs);
            }
        }

        impl_assign_ops!($($rest)*);
    };
}

    #[inline]
    fn apply<F: FnOnce(X) -> O, X, O>(f: F, x: X) -> O {
        f(x)
    }

    impl_bin_ops! {
        for<M: Modulus> <StaticModInt<M>     > ~ <StaticModInt<M>     > -> StaticModInt<M>  { { |x| x  } ~ { |x| x  } }
        for<M: Modulus> <StaticModInt<M>     > ~ <&'_ StaticModInt<M> > -> StaticModInt<M>  { { |x| x  } ~ { |&x| x } }
        for<M: Modulus> <&'_ StaticModInt<M> > ~ <StaticModInt<M>     > -> StaticModInt<M>  { { |&x| x } ~ { |x| x  } }
        for<M: Modulus> <&'_ StaticModInt<M> > ~ <&'_ StaticModInt<M> > -> StaticModInt<M>  { { |&x| x } ~ { |&x| x } }
        for<I: Id     > <DynamicModInt<I>    > ~ <DynamicModInt<I>    > -> DynamicModInt<I> { { |x| x  } ~ { |x| x  } }
        for<I: Id     > <DynamicModInt<I>    > ~ <&'_ DynamicModInt<I>> -> DynamicModInt<I> { { |x| x  } ~ { |&x| x } }
        for<I: Id     > <&'_ DynamicModInt<I>> ~ <DynamicModInt<I>    > -> DynamicModInt<I> { { |&x| x } ~ { |x| x  } }
        for<I: Id     > <&'_ DynamicModInt<I>> ~ <&'_ DynamicModInt<I>> -> DynamicModInt<I> { { |&x| x } ~ { |&x| x } }

        for<M: Modulus, T: RemEuclidU32> <StaticModInt<M>     > ~ <T> -> StaticModInt<M>  { { |x| x  } ~ { StaticModInt::<M>::new } }
        for<I: Id     , T: RemEuclidU32> <DynamicModInt<I>    > ~ <T> -> DynamicModInt<I> { { |x| x  } ~ { DynamicModInt::<I>::new } }
    }

    impl_assign_ops! {
        for<M: Modulus> <StaticModInt<M> > ~= <StaticModInt<M>     > { _ ~= { |x| x  } }
        for<M: Modulus> <StaticModInt<M> > ~= <&'_ StaticModInt<M> > { _ ~= { |&x| x } }
        for<I: Id     > <DynamicModInt<I>> ~= <DynamicModInt<I>    > { _ ~= { |x| x  } }
        for<I: Id     > <DynamicModInt<I>> ~= <&'_ DynamicModInt<I>> { _ ~= { |&x| x } }

        for<M: Modulus, T: RemEuclidU32> <StaticModInt<M> > ~= <T> { _ ~= { StaticModInt::<M>::new } }
        for<I: Id,      T: RemEuclidU32> <DynamicModInt<I>> ~= <T> { _ ~= { DynamicModInt::<I>::new } }
    }

    macro_rules! impl_folding {
    () => {};
    (impl<$generic_param:ident : $generic_param_bound:tt> $trait:ident<_> for $self:ty { fn $method:ident(_) -> _ { _($unit:expr, $op:expr) } } $($rest:tt)*) => {
        impl<$generic_param: $generic_param_bound> $trait<Self> for $self {
            #[inline]
            fn $method<S>(iter: S) -> Self
            where
                S: Iterator<Item = Self>,
            {
                iter.fold($unit, $op)
            }
        }

        impl<'a, $generic_param: $generic_param_bound> $trait<&'a Self> for $self {
            #[inline]
            fn $method<S>(iter: S) -> Self
            where
                S: Iterator<Item = &'a Self>,
            {
                iter.fold($unit, $op)
            }
        }

        impl_folding!($($rest)*);
    };
}

    impl_folding! {
        impl<M: Modulus> Sum<_>     for StaticModInt<M>  { fn sum(_)     -> _ { _(Self::raw(0), Add::add) } }
        impl<M: Modulus> Product<_> for StaticModInt<M>  { fn product(_) -> _ { _(Self::raw(1), Mul::mul) } }
        impl<I: Id     > Sum<_>     for DynamicModInt<I> { fn sum(_)     -> _ { _(Self::raw(0), Add::add) } }
        impl<I: Id     > Product<_> for DynamicModInt<I> { fn product(_) -> _ { _(Self::raw(1), Mul::mul) } }
    }
}
0