結果
| 問題 |
No.1879 How many matchings?
|
| コンテスト | |
| ユーザー |
miscalc
|
| 提出日時 | 2022-03-18 22:34:14 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
RE
|
| 実行時間 | - |
| コード長 | 4,533 bytes |
| コンパイル時間 | 2,010 ms |
| コンパイル使用メモリ | 205,620 KB |
| 最終ジャッジ日時 | 2025-01-28 10:30:33 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 6 RE * 9 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
#include <atcoder/modint>
using namespace atcoder;
//using mint = modint998244353;
using mint = modint1000000007;
using ll = long long;
using ld = long double;
using pll = pair<ll, ll>;
using tlll = tuple<ll, ll, ll>;
constexpr ll INF = 1LL << 60;
template<class T> bool chmin(T& a, T b) {if (a > b) {a = b; return true;} return false;}
template<class T> bool chmax(T& a, T b) {if (a < b) {a = b; return true;} return false;}
ll safemod(ll A, ll M) {return (A % M + M) % M;}
ll divfloor(ll A, ll B) {if (B < 0) {return divfloor(-A, -B);} return (A - safemod(A, B)) / B;}
ll divceil(ll A, ll B) {if (B < 0) {return divceil(-A, -B);} return divfloor(A + B - 1, B);}
template<class T> void unique(vector<T> &V) {V.erase(unique(V.begin(), V.end()), V.end());}
template<class T> void sortunique(vector<T> &V) {sort(V.begin(), V.end()); V.erase(unique(V.begin(), V.end()), V.end());}
#define FINALANS(A) do {cout << (A) << '\n'; exit(0);} while (false)
template<class T> void printvec(vector<T> &V) {int _n = V.size(); for (int i = 0; i < _n; i++) cout << V[i] << (i == _n - 1 ? "" : " ");cout << '\n';}
template<class T> void printvect(vector<T> &V) {for (auto v : V) cout << v << '\n';}
template<class T> void printvec2(vector<vector<T>> &V) {for (auto &v : V) printvec(v);}
template<class T, T(*e0)(), T(*e1)()>
struct matrix : vector<vector<T>>
{
using vector<vector<T>>::vector;
using vector<vector<T>>::operator=;
matrix(int n, int m, T a = e0())
{
(*this) = vector<vector<T>>(n, vector<T>(m, e0()));
for (int i = 0; i < min(n, m); i++)
{
(*this)[i][i] = a;
}
}
matrix operator-() const
{
int N = (*this).size(), M = (*this)[0].size();
matrix res(*this);
for (int i = 0; i < N; i++)
{
for (int j = 0; j < M; j++)
{
res[i][j] = -res[i][j];
}
}
return res;
}
matrix &operator+=(const matrix &A)
{
int N = (*this).size(), M = (*this)[0].size();
assert(A.size() == N && A[0].size() == M);
for (int i = 0; i < N; i++)
{
for (int j = 0; j < M; j++)
{
(*this)[i][j] += A[i][j];
}
}
return *this;
}
matrix &operator-=(const matrix &A) { return (*this) += -A; }
matrix &operator*=(const T x)
{
int N = (*this).size(), M = (*this)[0].size();
for (int i = 0; i < N; i++)
{
for (int j = 0; j < M; j++)
{
(*this)[i][j] *= x;
}
}
return *this;
}
matrix &operator/=(const T x)
{
int N = (*this).size(), M = (*this)[0].size();
for (int i = 0; i < N; i++)
{
for (int j = 0; j < M; j++)
{
(*this)[i][j] /= x;
}
}
return *this;
}
friend matrix &operator*=(const T x, matrix &A) { return A *= x; }
vector<T> operator*(const vector<T> &v)
{
int N = (*this).size(), M = (*this)[0].size();
assert(v.size() == M);
vector<T> res(N, e0());
for (int i = 0; i < N; i++)
{
for (int j = 0; j < M; j++)
{
res[i] += (*this)[i][j] * v[j];
}
}
return res;
}
matrix operator*(const matrix &A)
{
int N = (*this).size(), M = (*this)[0].size();
assert(A.size() == M);
int K = A[0].size();
matrix res(N, K, e0());
for (int i = 0; i < N; i++)
{
for (int j = 0; j < M; j++)
{
for (int k = 0; k < K; k++)
{
res[i][k] += (*this)[i][j] * A[j][k];
}
}
}
return res;
}
matrix pow(ll k)
{
int N = (*this).size(), M = (*this)[0].size();
assert(N == M);
matrix res(N, N, e1()), tmp(*this);
while (k > 0)
{
if (k & 1)
res *= tmp;
tmp *= tmp;
k >>= 1;
}
return res;
}
matrix operator+(const matrix &A) const { return matrix(*this) += A; }
matrix operator-(const matrix &A) const { return matrix(*this) -= A; }
matrix operator*(const T x) const { return matrix(*this) *= x; }
matrix operator/(const T x) const { return matrix(*this) /= x; }
friend matrix operator*(const T x, matrix &A) { return A *= x; }
matrix &operator*=(const matrix &A) { return (*this) = (*this) * A; }
};
// e0, e1 は加法, 乗法の単位元。問題によって書き換える
template <class T> constexpr T e0() { return 0; }
template <class T> constexpr T e1() { return 1; }
int main()
{
ll N;
cin >> N;
assert(N % 2 == 0);
matrix<mint, e0, e1> A = {{1, 1}, {1, 0}};
vector<mint> ans = {1, 0};
ans = A.pow(N / 2) * ans;
cout << ans.at(0).val() << endl;
}
miscalc