結果
問題 | No.1879 How many matchings? |
ユーザー | t98slider |
提出日時 | 2022-03-18 22:38:58 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 10,925 bytes |
コンパイル時間 | 1,902 ms |
コンパイル使用メモリ | 176,676 KB |
実行使用メモリ | 6,820 KB |
最終ジャッジ日時 | 2024-10-03 07:33:04 |
合計ジャッジ時間 | 2,060 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,820 KB |
testcase_01 | AC | 2 ms
6,816 KB |
testcase_02 | WA | - |
testcase_03 | AC | 2 ms
6,820 KB |
testcase_04 | RE | - |
testcase_05 | AC | 2 ms
6,820 KB |
testcase_06 | RE | - |
testcase_07 | AC | 1 ms
6,816 KB |
testcase_08 | RE | - |
testcase_09 | AC | 2 ms
6,816 KB |
testcase_10 | RE | - |
testcase_11 | RE | - |
testcase_12 | RE | - |
testcase_13 | AC | 2 ms
6,820 KB |
testcase_14 | RE | - |
ソースコード
#include <bits/stdc++.h> #define all(v) v.begin(), v.end() #define rall(v) v.rbegin(), v.rend() #define rep(i,n) for(int i=0;i<(int)(n);i++) #define drep(i,j,n) for(int i=0;i<(int)(n-1);i++)for(int j=i+1;j<(int)(n);j++) #define trep(i,j,k,n) for(int i=0;i<(int)(n-2);i++)for(int j=i+1;j<(int)(n-1);j++)for(int k=j+1;k<(int)(n);k++) #define codefor int test;scanf("%d",&test);while(test--) #define INT(...) int __VA_ARGS__;in(__VA_ARGS__) #define LL(...) ll __VA_ARGS__;in(__VA_ARGS__) #define yes(ans) if(ans)printf("yes\n");else printf("no\n") #define Yes(ans) if(ans)printf("Yes\n");else printf("No\n") #define YES(ans) if(ans)printf("YES\n");else printf("NO\n") #define popcount(v) __builtin_popcountll(v) #define vector2d(type,name,h,...) vector<vector<type>>name(h,vector<type>(__VA_ARGS__)) #define vector3d(type,name,h,w,...) vector<vector<vector<type>>>name(h,vector<vector<type>>(w,vector<type>(__VA_ARGS__))) #define vector4d(type,name,h,w,d,...) vector<vector<vector<vector<type>>>>name(h,vector<vector<vector<type>>>(w,vector<vector<type>>(d,vector<type>(__VA_ARGS__)))) using namespace std; using ll = long long; template<class T> using rpriority_queue = priority_queue<T, vector<T>, greater<T>>; const int MOD=1000000007; const int MOD2=998244353; const int INF=1<<30; const ll INF2=1LL<<60; void scan(int& a){scanf("%d",&a);} void scan(long long& a){scanf("%lld",&a);} template<class T,class L>void scan(pair<T, L>& p){scan(p.first);scan(p.second);} template<class T,class U,class V>void scan(tuple<T,U,V>& p){scan(get<0>(p));scan(get<1>(p));scan(get<2>(p));} template<class T, size_t size> void scan(array<T, size>& a){ for(auto&& i : a) scan(i);} template<class T> void scan(T& a){cin>>a;} template<class T> void scan(vector<T>& vec){for(auto&& it:vec)scan(it);} void in(){} template <class Head, class... Tail> void in(Head& head, Tail&... tail){scan(head);in(tail...);} void print(const int& a){printf("%d",a);} void print(const long long& a){printf("%lld",a);} void print(const double& a){printf("%.15lf",a);} template<class T,class L>void print(const pair<T, L>& p){print(p.first);putchar(' ');print(p.second);} template<class T> void print(const T& a){cout<<a;} template<class T> void print(const vector<T>& vec){if(vec.empty())return;print(vec[0]);for(auto it=vec.begin();++it!= vec.end();){putchar(' ');print(*it);}} void out(){putchar('\n');} template<class T> void out(const T& t){print(t);putchar('\n');} template <class Head, class... Tail> void out(const Head& head,const Tail&... tail){print(head);putchar(' ');out(tail...);} template<class T> void dprint(const T& a){cerr<<a;} template<class T> void dprint(const vector<T>& vec){if(vec.empty())return;cerr<<vec[0];for(auto it=vec.begin();++it!= vec.end();){cerr<<" "<<*it;}} void debug(){cerr<<'\n';} template<class T> void debug(const T& t){dprint(t);cerr<<endl;} template <class Head, class... Tail> void debug(const Head& head, const Tail&... tail){dprint(head);cerr<<" ";debug(tail...);} ll intpow(ll a, ll b){ ll ans = 1; while(b){ if(b & 1) ans *= a; a *= a; b /= 2; } return ans; } ll modpow(ll a, ll b, ll p){ ll ans = 1; while(b){ if(b & 1) (ans *= a) %= p; (a *= a) %= p; b /= 2; } return ans; } ll modinv(ll a, ll m) {ll b = m, u = 1, v = 0;while (b) {ll t = a / b;a -= t * b; swap(a, b);u -= t * v; swap(u, v);}u %= m;if (u < 0) u += m;return u;} ll updivide(ll a,ll b){return (a+b-1)/b;} int msb(ll v){return 63-__builtin_clzll(v);} template<class T> void chmax(T &a,const T b){if(b>a)a=b;} template<class T> void chmin(T &a,const T b){if(b<a)a=b;} namespace internal {constexpr long long safe_mod(long long x, long long m) {x %= m;if (x < 0) x += m;return x;}struct barrett {unsigned int _m;unsigned long long im;explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}unsigned int umod() const { return _m; }}; constexpr long long pow_mod_constexpr(long long x, long long n, int m) {if (m == 1) return 0;unsigned int _m = (unsigned int)(m);unsigned long long r = 1;unsigned long long y = safe_mod(x, m);while (n) {if (n & 1) r = (r * y) % _m;y = (y * y) % _m;n >>= 1;}return r;}constexpr bool is_prime_constexpr(int n) {if (n <= 1) return false;if (n == 2 || n == 7 || n == 61) return true;if (n % 2 == 0) return false;long long d = n - 1;while (d % 2 == 0) d /= 2;constexpr long long bases[3] = {2, 7, 61};for (long long a : bases) {long long t = d;long long y = pow_mod_constexpr(a, t, n);while (t != n - 1 && y != 1 && y != n - 1) {y = y * y % n;t <<= 1;}if (y != n - 1 && t % 2 == 0) {return false;}}return true;}template <int n> constexpr bool is_prime = is_prime_constexpr(n); constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {a = safe_mod(a, b);if (a == 0) return {b, 0};long long s = b, t = a;long long m0 = 0, m1 = 1;while (t) {long long u = s / t;s -= t * u;m0 -= m1 * u;auto tmp = s;s = t;t = tmp;tmp = m0;m0 = m1;m1 = tmp;}if (m0 < 0) m0 += b / s;return {s, m0};}constexpr int primitive_root_constexpr(int m) {if (m == 2) return 1;if (m == 167772161) return 3;if (m == 469762049) return 3;if (m == 754974721) return 11;if (m == 998244353) return 3;int divs[20] = {};divs[0] = 2;int cnt = 1;int x = (m - 1) / 2;while (x % 2 == 0) x /= 2;for (int i = 3; (long long)(i)*i <= x; i += 2) {if (x % i == 0) {divs[cnt++] = i;while (x % i == 0) {x /= i;}}}if (x > 1) {divs[cnt++] = x;}for (int g = 2;; g++) {bool ok = true;for (int i = 0; i < cnt; i++) {if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {ok = false;break;}}if (ok) return g;}} template <int m> constexpr int primitive_root = primitive_root_constexpr(m);unsigned long long floor_sum_unsigned(unsigned long long n,unsigned long long m,unsigned long long a,unsigned long long b) {unsigned long long ans = 0;while (true) {if (a >= m) {ans += n * (n - 1) / 2 * (a / m);a %= m;}if (b >= m) {ans += n * (b / m);b %= m;}unsigned long long y_max = a * n + b;if (y_max < m) break;n = (unsigned long long)(y_max / m);b = (unsigned long long)(y_max % m);std::swap(m, a);}return ans;} template <class T> using is_integral = typename std::is_integral<T>;template <class T>using is_signed_int =typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,std::true_type,std::false_type>::type;template <class T>using is_unsigned_int =typename std::conditional<is_integral<T>::value &&std::is_unsigned<T>::value,std::true_type,std::false_type>::type;template <class T>using to_unsigned = typename std::conditional<is_signed_int<T>::value,std::make_unsigned<T>,std::common_type<T>>::type;template <class T> using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;template <class T> using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;template <class T> using to_unsigned_t = typename to_unsigned<T>::type;struct modint_base {};struct static_modint_base : modint_base {};template <class T> using is_modint = std::is_base_of<modint_base, T>;template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;} // namespace internal template <int m, std::enable_if_t<(1 <= m)>* = nullptr> struct static_modint : internal::static_modint_base {using mint = static_modint; public: static constexpr int mod() { return m; }static mint raw(int v) {mint x;x._v = v;return x;}static_modint() : _v(0) {}template <class T, internal::is_signed_int_t<T>* = nullptr>static_modint(T v) {long long x = (long long)(v % (long long)(umod()));if (x < 0) x += umod();_v = (unsigned int)(x);}template <class T, internal::is_unsigned_int_t<T>* = nullptr>static_modint(T v) {_v = (unsigned int)(v % umod());}unsigned int val() const { return _v; }mint& operator++() {_v++;if (_v == umod()) _v = 0;return *this;}mint& operator--() {if (_v == 0) _v = umod();_v--;return *this;}mint operator++(int) {mint result = *this;++*this;return result;}mint operator--(int) {mint result = *this;--*this;return result;}mint& operator+=(const mint& rhs) {_v += rhs._v;if (_v >= umod()) _v -= umod();return *this;}mint& operator-=(const mint& rhs) {_v -= rhs._v;if (_v >= umod()) _v += umod();return *this;}mint& operator*=(const mint& rhs) {unsigned long long z = _v;z *= rhs._v;_v = (unsigned int)(z % umod());return *this;}mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; }mint operator-() const { return mint() - *this; }mint pow(long long n) const {assert(0 <= n);mint x = *this, r = 1;while (n) {if (n & 1) r *= x;x *= x;n >>= 1;}return r;}mint inv() const {if (prime) {assert(_v);return pow(umod() - 2);} else {auto eg = internal::inv_gcd(_v, m);assert(eg.first == 1);return eg.second;}}friend mint operator+(const mint& lhs, const mint& rhs) {return mint(lhs) += rhs;}friend mint operator-(const mint& lhs, const mint& rhs) {return mint(lhs) -= rhs;}friend mint operator*(const mint& lhs, const mint& rhs) {return mint(lhs) *= rhs;}friend mint operator/(const mint& lhs, const mint& rhs) {return mint(lhs) /= rhs;}friend bool operator==(const mint& lhs, const mint& rhs) {return lhs._v == rhs._v;}friend bool operator!=(const mint& lhs, const mint& rhs) {return lhs._v != rhs._v;}friend istream& operator>>(istream& os,mint& rhs) noexcept {long long v;rhs = mint{(os >> v, v)};return os;}friend constexpr ostream& operator << (ostream &os, const mint& rhs) noexcept {return os << rhs._v;} private: unsigned int _v;static constexpr unsigned int umod() { return m; }static constexpr bool prime = internal::is_prime<m>; }; using mint = static_modint<1000000007>; using mint2 = static_modint<998244353>; //行列の積 template<class T> vector<vector<T>> Matrix_Multiplication(vector<vector<T>> &a,vector<vector<T>> &b){ int n=a.size(),m=a[0].size(),l=b[0].size(); vector<vector<T>> ret(n,vector<T>(l,0)); for(int i=0;i<n;i++){ for(int j=0;j<l;j++){ for(int k=0;k<m;k++){ ret[i][j]+=a[i][k]*b[k][j]; } } } return ret; } //行列aを正方行列と仮定して行列の累乗を計算する template<class T> vector<vector<T>> Matrix_Exponentiation(vector<vector<T>> a,ll b){ int n=a.size(); vector<vector<T>> ret(n,vector<T>(n,0)); for(int i=0;i<n;i++)ret[i][i]=1; while(b){ if(b&1)ret=Matrix_Multiplication(ret,a); a=Matrix_Multiplication(a,a); b/=2; } return ret; } int main(){ LL(n); vector2d(mint,A,1<<3,1<<3); rep(i,1<<3){ if(i&1){ for(int j=1;j<3;j++)if(i>>j&1)A[i][4+(i^(1)^(1<<j))/2]++; }else{ A[i][4+i/2]++; } } if(n%2==0){ auto B=Matrix_Exponentiation(A,n); out(B[7][7]); }else{ if(n==1){ out(1); return 0; } if(n==3){ out(2); return 0; } return 1; auto B=Matrix_Exponentiation(A,n); mint ans=0; for(int i=0;i<3;i++){ ans+=2*B[7^(1<<i)][7]; } out(ans); } }