結果

問題 No.1084 積の積
ユーザー t98slidert98slider
提出日時 2022-03-23 11:27:12
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 124 ms / 2,000 ms
コード長 16,138 bytes
コンパイル時間 1,813 ms
コンパイル使用メモリ 181,384 KB
実行使用メモリ 12,660 KB
最終ジャッジ日時 2024-10-11 09:00:41
合計ジャッジ時間 4,550 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 2 ms
5,248 KB
testcase_03 AC 2 ms
5,248 KB
testcase_04 AC 124 ms
12,476 KB
testcase_05 AC 11 ms
5,248 KB
testcase_06 AC 124 ms
12,544 KB
testcase_07 AC 2 ms
5,248 KB
testcase_08 AC 2 ms
5,248 KB
testcase_09 AC 14 ms
5,248 KB
testcase_10 AC 2 ms
5,248 KB
testcase_11 AC 5 ms
5,248 KB
testcase_12 AC 44 ms
7,552 KB
testcase_13 AC 92 ms
12,192 KB
testcase_14 AC 32 ms
6,816 KB
testcase_15 AC 29 ms
6,816 KB
testcase_16 AC 105 ms
12,560 KB
testcase_17 AC 39 ms
7,552 KB
testcase_18 AC 66 ms
8,576 KB
testcase_19 AC 93 ms
12,232 KB
testcase_20 AC 21 ms
6,820 KB
testcase_21 AC 31 ms
6,820 KB
testcase_22 AC 25 ms
6,820 KB
testcase_23 AC 54 ms
7,936 KB
testcase_24 AC 48 ms
7,936 KB
testcase_25 AC 92 ms
12,104 KB
testcase_26 AC 104 ms
12,580 KB
testcase_27 AC 103 ms
12,660 KB
testcase_28 AC 102 ms
12,572 KB
testcase_29 AC 103 ms
12,564 KB
testcase_30 AC 103 ms
12,480 KB
testcase_31 AC 103 ms
12,600 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
#define all(v) v.begin(), v.end()
#define rall(v) v.rbegin(), v.rend()
#define rep(i,n) for(int i=0;i<(int)(n);i++)
#define drep(i,j,n) for(int i=0;i<(int)(n-1);i++)for(int j=i+1;j<(int)(n);j++)
#define trep(i,j,k,n) for(int i=0;i<(int)(n-2);i++)for(int j=i+1;j<(int)(n-1);j++)for(int k=j+1;k<(int)(n);k++)
#define codefor int test;scanf("%d",&test);while(test--)
#define INT(...) int __VA_ARGS__;in(__VA_ARGS__)
#define LL(...) ll __VA_ARGS__;in(__VA_ARGS__)
#define yes(ans) if(ans)printf("yes\n");else printf("no\n")
#define Yes(ans) if(ans)printf("Yes\n");else printf("No\n")
#define YES(ans) if(ans)printf("YES\n");else printf("NO\n")
#define popcount(v) __builtin_popcountll(v)
#define vector2d(type,name,h,...) vector<vector<type>>name(h,vector<type>(__VA_ARGS__))
#define vector3d(type,name,h,w,...) vector<vector<vector<type>>>name(h,vector<vector<type>>(w,vector<type>(__VA_ARGS__)))
#define vector4d(type,name,h,w,d,...) vector<vector<vector<vector<type>>>>name(h,vector<vector<vector<type>>>(w,vector<vector<type>>(d,vector<type>(__VA_ARGS__))))
using namespace std;
using ll = long long;
template<class T> using rpriority_queue = priority_queue<T, vector<T>, greater<T>>;
const int MOD=1000000007;
const int MOD2=998244353;
const int INF=1<<30;
const ll INF2=1LL<<60;
void scan(int& a){scanf("%d",&a);}
void scan(long long& a){scanf("%lld",&a);}
template<class T,class L>void scan(pair<T, L>& p){scan(p.first);scan(p.second);}
template<class T,class U,class V>void scan(tuple<T,U,V>& p){scan(get<0>(p));scan(get<1>(p));scan(get<2>(p));}
template<class T, size_t size> void scan(array<T, size>& a){ for(auto&& i : a) scan(i);}
template<class T> void scan(T& a){cin>>a;}
template<class T> void scan(vector<T>& vec){for(auto&& it:vec)scan(it);}
void in(){}
template <class Head, class... Tail> void in(Head& head, Tail&... tail){scan(head);in(tail...);}
void print(const int& a){printf("%d",a);}
void print(const long long& a){printf("%lld",a);}
void print(const double& a){printf("%.15lf",a);}
template<class T,class L>void print(const pair<T, L>& p){print(p.first);putchar(' ');print(p.second);}
template<class T> void print(const T& a){cout<<a;}
template<class T> void print(const vector<T>& vec){if(vec.empty())return;print(vec[0]);for(auto it=vec.begin();++it!= vec.end();){putchar(' ');print(*it);}}
void out(){putchar('\n');}
template<class T> void out(const T& t){print(t);putchar('\n');}
template <class Head, class... Tail> void out(const Head& head,const Tail&... tail){print(head);putchar(' ');out(tail...);}
template<class T> void dprint(const T& a){cerr<<a;}
template<class T> void dprint(const vector<T>& vec){if(vec.empty())return;cerr<<vec[0];for(auto it=vec.begin();++it!= vec.end();){cerr<<" "<<*it;}}
void debug(){cerr<<'\n';}
template<class T> void debug(const T& t){dprint(t);cerr<<endl;}
template <class Head, class... Tail> void debug(const Head& head, const Tail&... tail){dprint(head);cerr<<" ";debug(tail...);}
ll intpow(ll a, ll b){ ll ans = 1; while(b){ if(b & 1) ans *= a; a *= a; b /= 2; } return ans; }
ll modpow(ll a, ll b, ll p){ ll ans = 1; while(b){ if(b & 1) (ans *= a) %= p; (a *= a) %= p; b /= 2; } return ans; }
ll modinv(ll a, ll m) {ll b = m, u = 1, v = 0;while (b) {ll t = a / b;a -= t * b; swap(a, b);u -= t * v; swap(u, v);}u %= m;if (u < 0) u += m;return u;}
ll updivide(ll a,ll b){return (a+b-1)/b;}
int msb(ll v){return 63-__builtin_clzll(v);}
template<class T> void chmax(T &a,const T b){if(b>a)a=b;}
template<class T> void chmin(T &a,const T b){if(b<a)a=b;}

namespace internal {constexpr long long safe_mod(long long x, long long m) {x %= m;if (x < 0) x += m;return x;}struct barrett {unsigned int _m;unsigned long long im;explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}unsigned int umod() const { return _m; }};
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {if (m == 1) return 0;unsigned int _m = (unsigned int)(m);unsigned long long r = 1;unsigned long long y = safe_mod(x, m);while (n) {if (n & 1) r = (r * y) % _m;y = (y * y) % _m;n >>= 1;}return r;}constexpr bool is_prime_constexpr(int n) {if (n <= 1) return false;if (n == 2 || n == 7 || n == 61) return true;if (n % 2 == 0) return false;long long d = n - 1;while (d % 2 == 0) d /= 2;constexpr long long bases[3] = {2, 7, 61};for (long long a : bases) {long long t = d;long long y = pow_mod_constexpr(a, t, n);while (t != n - 1 && y != 1 && y != n - 1) {y = y * y % n;t <<= 1;}if (y != n - 1 && t % 2 == 0) {return false;}}return true;}template <int n> constexpr bool is_prime = is_prime_constexpr(n);
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {a = safe_mod(a, b);if (a == 0) return {b, 0};long long s = b, t = a;long long m0 = 0, m1 = 1;while (t) {long long u = s / t;s -= t * u;m0 -= m1 * u;auto tmp = s;s = t;t = tmp;tmp = m0;m0 = m1;m1 = tmp;}if (m0 < 0) m0 += b / s;return {s, m0};}constexpr int primitive_root_constexpr(int m) {if (m == 2) return 1;if (m == 167772161) return 3;if (m == 469762049) return 3;if (m == 754974721) return 11;if (m == 998244353) return 3;int divs[20] = {};divs[0] = 2;int cnt = 1;int x = (m - 1) / 2;while (x % 2 == 0) x /= 2;for (int i = 3; (long long)(i)*i <= x; i += 2) {if (x % i == 0) {divs[cnt++] = i;while (x % i == 0) {x /= i;}}}if (x > 1) {divs[cnt++] = x;}for (int g = 2;; g++) {bool ok = true;for (int i = 0; i < cnt; i++) {if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {ok = false;break;}}if (ok) return g;}}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);unsigned long long floor_sum_unsigned(unsigned long long n,unsigned long long m,unsigned long long a,unsigned long long b) {unsigned long long ans = 0;while (true) {if (a >= m) {ans += n * (n - 1) / 2 * (a / m);a %= m;}if (b >= m) {ans += n * (b / m);b %= m;}unsigned long long y_max = a * n + b;if (y_max < m) break;n = (unsigned long long)(y_max / m);b = (unsigned long long)(y_max % m);std::swap(m, a);}return ans;}
template <class T> using is_integral = typename std::is_integral<T>;template <class T>using is_signed_int =typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,std::true_type,std::false_type>::type;template <class T>using is_unsigned_int =typename std::conditional<is_integral<T>::value &&std::is_unsigned<T>::value,std::true_type,std::false_type>::type;template <class T>using to_unsigned = typename std::conditional<is_signed_int<T>::value,std::make_unsigned<T>,std::common_type<T>>::type;template <class T> using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;template <class T> using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;template <class T> using to_unsigned_t = typename to_unsigned<T>::type;struct modint_base {};struct static_modint_base : modint_base {};template <class T> using is_modint = std::is_base_of<modint_base, T>;template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;}  // namespace internal
template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {using mint = static_modint;
  public:
    static constexpr int mod() { return m; }static mint raw(int v) {mint x;x._v = v;return x;}static_modint() : _v(0) {}template <class T, internal::is_signed_int_t<T>* = nullptr>static_modint(T v) {long long x = (long long)(v % (long long)(umod()));if (x < 0) x += umod();_v = (unsigned int)(x);}template <class T, internal::is_unsigned_int_t<T>* = nullptr>static_modint(T v) {_v = (unsigned int)(v % umod());}unsigned int val() const { return _v; }mint& operator++() {_v++;if (_v == umod()) _v = 0;return *this;}mint& operator--() {if (_v == 0) _v = umod();_v--;return *this;}mint operator++(int) {mint result = *this;++*this;return result;}mint operator--(int) {mint result = *this;--*this;return result;}mint& operator+=(const mint& rhs) {_v += rhs._v;if (_v >= umod()) _v -= umod();return *this;}mint& operator-=(const mint& rhs) {_v -= rhs._v;if (_v >= umod()) _v += umod();return *this;}mint& operator*=(const mint& rhs) {unsigned long long z = _v;z *= rhs._v;_v = (unsigned int)(z % umod());return *this;}mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
    mint operator+() const { return *this; }mint operator-() const { return mint() - *this; }mint pow(long long n) const {assert(0 <= n);mint x = *this, r = 1;while (n) {if (n & 1) r *= x;x *= x;n >>= 1;}return r;}mint inv() const {if (prime) {assert(_v);return pow(umod() - 2);} else {auto eg = internal::inv_gcd(_v, m);assert(eg.first == 1);return eg.second;}}friend mint operator+(const mint& lhs, const mint& rhs) {return mint(lhs) += rhs;}friend mint operator-(const mint& lhs, const mint& rhs) {return mint(lhs) -= rhs;}friend mint operator*(const mint& lhs, const mint& rhs) {return mint(lhs) *= rhs;}friend mint operator/(const mint& lhs, const mint& rhs) {return mint(lhs) /= rhs;}friend bool operator==(const mint& lhs, const mint& rhs) {return lhs._v == rhs._v;}friend bool operator!=(const mint& lhs, const mint& rhs) {return lhs._v != rhs._v;}friend istream& operator>>(istream& os,mint& rhs) noexcept {long long v;rhs = mint{(os >> v, v)};return os;}friend constexpr ostream& operator << (ostream &os, const mint& rhs) noexcept {return os << rhs._v;}
  private:
    unsigned int _v;static constexpr unsigned int umod() { return m; }static constexpr bool prime = internal::is_prime<m>;
};
using mint = static_modint<1000000007>;
using mint2 = static_modint<1000000009>;


template <class S,
            S (*op)(S, S),
            S (*e)(),
            class F,
            S (*mapping)(F, S),
            F (*composition)(F, F),
            F (*id)()>
struct lazy_segtree {
    public:
        lazy_segtree() : lazy_segtree(0) {}
        lazy_segtree(int n) : lazy_segtree(std::vector<S>(n, e())) {}
        lazy_segtree(const std::vector<S>& v) : _n(int(v.size())) {
        log = ceil_pow2(_n);
        size = 1 << log;
        d = std::vector<S>(2 * size, e());
        lz = std::vector<F>(size, id());
        for (int i = 0; i < _n; i++) d[size + i] = v[i];
        for (int i = size - 1; i >= 1; i--) {
                update(i);
            }
        }
        void set(int p, S x) {
            assert(0 <= p && p < _n);
            p += size;
            for (int i = log; i >= 1; i--) push(p >> i);
            d[p] = x;
            for (int i = 1; i <= log; i++) update(p >> i);
        }
        S get(int p) {
            assert(0 <= p && p < _n);
            p += size;
            for (int i = log; i >= 1; i--) push(p >> i);
            return d[p];
        }
        S prod(int l, int r) {
            assert(0 <= l && l <= r && r <= _n);
            if (l == r) return e();
            l += size;
            r += size;
            for (int i = log; i >= 1; i--) {
                if (((l >> i) << i) != l) push(l >> i);
                if (((r >> i) << i) != r) push(r >> i);
            }
        S sml = e(), smr = e();
            while (l < r) {
                if (l & 1) sml = op(sml, d[l++]);
                if (r & 1) smr = op(d[--r], smr);
                l >>= 1;
                r >>= 1;
            }
            return op(sml, smr);
        }
        S all_prod() { return d[1]; }
        void apply(int p, F f) {
            assert(0 <= p && p < _n);
            p += size;
            for (int i = log; i >= 1; i--) push(p >> i);
            d[p] = mapping(f, d[p]);
            for (int i = 1; i <= log; i++) update(p >> i);
        }
        void apply(int l, int r, F f) {
            assert(0 <= l && l <= r && r <= _n);
            if (l == r) return;
            l += size;
            r += size;
            for (int i = log; i >= 1; i--) {
                if (((l >> i) << i) != l) push(l >> i);
                if (((r >> i) << i) != r) push((r - 1) >> i);
            }
            {
                int l2 = l, r2 = r;
                while (l < r) {
                    if (l & 1) all_apply(l++, f);
                    if (r & 1) all_apply(--r, f);
                    l >>= 1;
                    r >>= 1;
                }
                l = l2;
                r = r2;
            }
            for (int i = 1; i <= log; i++) {
                if (((l >> i) << i) != l) update(l >> i);
                if (((r >> i) << i) != r) update((r - 1) >> i);
            }
            }
        template <bool (*g)(S)> int max_right(int l) {
            return max_right(l, [](S x) { return g(x); });
        }
        template <class G> int max_right(int l, G g) {
            assert(0 <= l && l <= _n);
            assert(g(e()));
            if (l == _n) return _n;
            l += size;
            for (int i = log; i >= 1; i--) push(l >> i);
            S sm = e();
            do {
                while (l % 2 == 0) l >>= 1;
                if (!g(op(sm, d[l]))) {
                    while (l < size) {
                        push(l);
                        l = (2 * l);
                        if (g(op(sm, d[l]))) {
                            sm = op(sm, d[l]);
                            l++;
                        }
                    }
                    return l - size;
                }
                sm = op(sm, d[l]);
                l++;
            } while ((l & -l) != l);
            return _n;
        }
        template <bool (*g)(S)> int min_left(int r) {
            return min_left(r, [](S x) { return g(x); });
        }
        template <class G> int min_left(int r, G g) {
            assert(0 <= r && r <= _n);
            assert(g(e()));
            if (r == 0) return 0;
            r += size;
            for (int i = log; i >= 1; i--) push((r - 1) >> i);
            S sm = e();
            do {
                r--;
                while (r > 1 && (r % 2)) r >>= 1;
                if (!g(op(d[r], sm))) {
                    while (r < size) {
                        push(r);
                        r = (2 * r + 1);
                        if (g(op(d[r], sm))) {
                            sm = op(d[r], sm);
                            r--;
                        }
                    }
                    return r + 1 - size;
                }
                sm = op(d[r], sm);
            } while ((r & -r) != r);
            return 0;
        }
    private:
        int _n, size, log;
        std::vector<S> d;
        std::vector<F> lz;
        void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
        void all_apply(int k, F f) {
            d[k] = mapping(f, d[k]);
            if (k < size) lz[k] = composition(f, lz[k]);
        }
        void push(int k) {
            all_apply(2 * k, lz[k]);
            all_apply(2 * k + 1, lz[k]);
            lz[k] = id();
        }
        int ceil_pow2(int n) {
            int x = 0;
            while ((1U << x) < (unsigned int)(n)) x++;
            return x;
        }
};

using S=array<ll,2>;
using F=array<ll,2>;
//単位元
S e(){return S({0,0});}
//演算
S op(S l,S r){return S({0,0});}
//xにfを作用させた時の値の変化
S mapping(F f,S x){return S({x[0]+f[0]+f[1]*x[1],x[1]});}
//gを演算した後にfを演算させると演算子はどうなるか
F composition(F f, F g){return S({f[0]+g[0],f[1]+g[1]});}
//作用させても変化させないもの
F id(){return S({0,0});}

int main(){
    LL(n);
    vector<ll> a(n);
    in(a);
    if(*min_element(all(a))==0){
        out(0);
        return 0;
    }
    vector<mint> s1(n+1);
    vector<mint2> s2(n+1);
    s1[0]=1,s2[0]=1;
    for(int i=0;i<n;i++){
        s1[i+1]=s1[i]*a[i];
        s2[i+1]=s2[i]*a[i];
    }
    ll v=intpow(10,9);
    lazy_segtree<S, op, e, F, mapping, composition, id> seg(n);
    rep(i,n)seg.set(i,S({0,-i}));
    for(int i=0;i<n;i++){
        auto d1=1/s1[i];
        auto d2=1/s2[i];
        int l=i+1,r=n+1,mid;
        while(l<r){
            mid=(l+r)/2;
            if((d1*s1[mid]).val()==(d2*s2[mid]).val() && ((d1*s1[mid]).val() < v))l=mid+1;
            else r=mid; 
        }
        --l;
        seg.apply(i,l,S({l,1}));
    }
    mint ans=1;
    for(int i=0;i<n;i++){
        ans*=mint(a[i]).pow(seg.get(i)[0]);
    }
    out(ans);
}
0