結果
| 問題 |
No.1771 A DELETEQ
|
| コンテスト | |
| ユーザー |
Ricky_pon
|
| 提出日時 | 2022-03-24 22:45:31 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 46 ms / 3,500 ms |
| コード長 | 19,544 bytes |
| コンパイル時間 | 4,366 ms |
| コンパイル使用メモリ | 262,128 KB |
| 最終ジャッジ日時 | 2025-01-28 11:16:14 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 38 |
コンパイルメッセージ
main.cpp:125: warning: "rep" redefined
125 | #define rep(i, ...) rep_(i, __VA_ARGS__, __VA_ARGS__, 0, __VA_ARGS__)
|
main.cpp:69: note: this is the location of the previous definition
69 | #define rep(i, n) For(i, 0, n)
|
main.cpp: In function ‘int main()’:
main.cpp:698:10: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
698 | scanf("%d%d", &n, &m);
| ~~~~~^~~~~~~~~~~~~~~~
ソースコード
#include <bits/stdc++.h>
#include <atcoder/convolution>
#include <atcoder/modint>
#include <algorithm>
#include <cassert>
#include <vector>
template <class T>
bool chmax(T &a, const T &b) {
if (a < b) {
a = b;
return true;
}
return false;
}
template <class T>
bool chmin(T &a, const T &b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template <class T>
T div_floor(T a, T b) {
if (b < 0) a *= -1, b *= -1;
return a >= 0 ? a / b : (a + 1) / b - 1;
}
template <class T>
T div_ceil(T a, T b) {
if (b < 0) a *= -1, b *= -1;
return a > 0 ? (a - 1) / b + 1 : a / b;
}
template <typename T>
struct CoordComp {
std::vector<T> v;
bool sorted;
CoordComp() : sorted(false) {}
int size() { return v.size(); }
void add(T x) { v.push_back(x); }
void build() {
std::sort(v.begin(), v.end());
v.erase(std::unique(v.begin(), v.end()), v.end());
sorted = true;
}
int get_idx(T x) {
assert(sorted);
return lower_bound(v.begin(), v.end(), x) - v.begin();
}
T &operator[](int i) { return v[i]; }
};
#define For(i, a, b) for (int i = (int)(a); (i) < (int)(b); ++(i))
#define rFor(i, a, b) for (int i = (int)(a)-1; (i) >= (int)(b); --(i))
#define rep(i, n) For(i, 0, n)
#define rrep(i, n) rFor(i, n, 0)
#define fi first
#define se second
using namespace std;
using lint = long long;
using pii = pair<int, int>;
using pll = pair<lint, lint>;
using mint = atcoder::modint998244353;
using namespace atcoder;
istream &operator>>(istream &is, modint998244353 &a) {
long long v;
is >> v;
a = v;
return is;
}
ostream &operator<<(ostream &os, const modint998244353 &a) {
return os << a.val();
}
istream &operator>>(istream &is, modint1000000007 &a) {
long long v;
is >> v;
a = v;
return is;
}
ostream &operator<<(ostream &os, const modint1000000007 &a) {
return os << a.val();
}
template <int m>
istream &operator>>(istream &is, static_modint<m> &a) {
long long v;
is >> v;
a = v;
return is;
}
template <int m>
istream &operator>>(istream &is, dynamic_modint<m> &a) {
long long v;
is >> v;
a = v;
return is;
}
template <int m>
ostream &operator<<(ostream &os, const static_modint<m> &a) {
return os << a.val();
}
template <int m>
ostream &operator<<(ostream &os, const dynamic_modint<m> &a) {
return os << a.val();
}
#define rep_(i, a_, b_, a, b, ...) \
for (int i = (a), lim##i = (b); i < lim##i; ++i)
#define rep(i, ...) rep_(i, __VA_ARGS__, __VA_ARGS__, 0, __VA_ARGS__)
#define drep_(i, a_, b_, a, b, ...) \
for (int i = (a)-1, lim##i = (b); i >= lim##i; --i)
#define drep(i, ...) drep_(i, __VA_ARGS__, __VA_ARGS__, __VA_ARGS__, 0)
using ll = long long;
template <class T>
istream &operator>>(istream &is, vector<T> &v) {
for (auto &e : v) is >> e;
return is;
}
template <class T>
ostream &operator<<(ostream &os, const vector<T> &v) {
for (auto &e : v) os << e << ' ';
return os;
}
struct fast_ios {
fast_ios() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(20);
};
} fast_ios_;
// verified by:
// https://judge.yosupo.jp/problem/convolution_mod
// https://judge.yosupo.jp/problem/inv_of_formal_power_series
// https://judge.yosupo.jp/problem/log_of_formal_power_series
// https://judge.yosupo.jp/problem/exp_of_formal_power_series
// https://judge.yosupo.jp/problem/pow_of_formal_power_series
// https://judge.yosupo.jp/problem/polynomial_taylor_shift
// https://judge.yosupo.jp/problem/bernoulli_number
// https://judge.yosupo.jp/problem/sharp_p_subset_sum
using mint = modint998244353;
template <typename T>
struct Factorial {
int MAX;
vector<T> fac, finv;
Factorial(int m = 0) : MAX(m), fac(m + 1, 1), finv(m + 1, 1) {
rep(i, 2, MAX + 1) fac[i] = fac[i - 1] * i;
finv[MAX] /= fac[MAX];
drep(i, MAX + 1, 3) finv[i - 1] = finv[i] * i;
}
T binom(int n, int k) {
if (k < 0 || n < k) return 0;
return fac[n] * finv[k] * finv[n - k];
}
T perm(int n, int k) {
if (k < 0 || n < k) return 0;
return fac[n] * finv[n - k];
}
};
Factorial<mint> fc;
template <class T>
struct FormalPowerSeries : vector<T> {
using vector<T>::vector;
using vector<T>::operator=;
using F = FormalPowerSeries;
F operator-() const {
F res(*this);
for (auto &e : res) e = -e;
return res;
}
F &operator*=(const T &g) {
for (auto &e : *this) e *= g;
return *this;
}
F &operator/=(const T &g) {
assert(g != T(0));
*this *= g.inv();
return *this;
}
F &operator+=(const F &g) {
int n = this->size(), m = g.size();
rep(i, min(n, m))(*this)[i] += g[i];
return *this;
}
F &operator-=(const F &g) {
int n = this->size(), m = g.size();
rep(i, min(n, m))(*this)[i] -= g[i];
return *this;
}
F &operator<<=(const int d) {
int n = this->size();
if (d >= n) *this = F(n);
this->insert(this->begin(), d, 0);
this->resize(n);
return *this;
}
F &operator>>=(const int d) {
int n = this->size();
this->erase(this->begin(), this->begin() + min(n, d));
this->resize(n);
return *this;
}
// O(n log n)
F inv(int d = -1) const {
int n = this->size();
assert(n != 0 && (*this)[0] != 0);
if (d == -1) d = n;
assert(d >= 0);
F res{(*this)[0].inv()};
for (int m = 1; m < d; m *= 2) {
F f(this->begin(), this->begin() + min(n, 2 * m));
F g(res);
f.resize(2 * m), internal::butterfly(f);
g.resize(2 * m), internal::butterfly(g);
rep(i, 2 * m) f[i] *= g[i];
internal::butterfly_inv(f);
f.erase(f.begin(), f.begin() + m);
f.resize(2 * m), internal::butterfly(f);
rep(i, 2 * m) f[i] *= g[i];
internal::butterfly_inv(f);
T iz = T(2 * m).inv();
iz *= -iz;
rep(i, m) f[i] *= iz;
res.insert(res.end(), f.begin(), f.begin() + m);
}
res.resize(d);
return res;
}
// fast: FMT-friendly modulus only
// O(n log n)
F &multiply_inplace(const F &g, int d = -1) {
int n = this->size();
if (d == -1) d = n;
assert(d >= 0);
*this = convolution(move(*this), g);
this->resize(d);
return *this;
}
F multiply(const F &g, const int d = -1) const {
return F(*this).multiply_inplace(g, d);
}
// O(n log n)
F ÷_inplace(const F &g, int d = -1) {
int n = this->size();
if (d == -1) d = n;
assert(d >= 0);
*this = convolution(move(*this), g.inv(d));
this->resize(d);
return *this;
}
F divide(const F &g, const int d = -1) const {
return F(*this).divide_inplace(g, d);
}
// // naive
// // O(n^2)
// F &multiply_inplace(const F &g) {
// int n = this->size(), m = g.size();
// drep(i, n) {
// (*this)[i] *= g[0];
// rep(j, 1, min(i+1, m)) (*this)[i] += (*this)[i-j] * g[j];
// }
// return *this;
// }
// F multiply(const F &g) const { return F(*this).multiply_inplace(g); }
// // O(n^2)
// F ÷_inplace(const F &g) {
// assert(g[0] != T(0));
// T ig0 = g[0].inv();
// int n = this->size(), m = g.size();
// rep(i, n) {
// rep(j, 1, min(i+1, m)) (*this)[i] -= (*this)[i-j] * g[j];
// (*this)[i] *= ig0;
// }
// return *this;
// }
// F divide(const F &g) const { return F(*this).divide_inplace(g); }
// sparse
// O(nk)
F &multiply_inplace(vector<pair<int, T>> g) {
int n = this->size();
auto [d, c] = g.front();
if (d == 0)
g.erase(g.begin());
else
c = 0;
drep(i, n) {
(*this)[i] *= c;
for (auto &[j, b] : g) {
if (j > i) break;
(*this)[i] += (*this)[i - j] * b;
}
}
return *this;
}
F multiply(const vector<pair<int, T>> &g) const {
return F(*this).multiply_inplace(g);
}
// O(nk)
F ÷_inplace(vector<pair<int, T>> g) {
int n = this->size();
auto [d, c] = g.front();
assert(d == 0 && c != T(0));
T ic = c.inv();
g.erase(g.begin());
rep(i, n) {
for (auto &[j, b] : g) {
if (j > i) break;
(*this)[i] -= (*this)[i - j] * b;
}
(*this)[i] *= ic;
}
return *this;
}
F divide(const vector<pair<int, T>> &g) const {
return F(*this).divide_inplace(g);
}
// multiply and divide (1 + cz^d)
// O(n)
void multiply_inplace(const int d, const T c) {
int n = this->size();
if (c == T(1))
drep(i, n - d)(*this)[i + d] += (*this)[i];
else if (c == T(-1))
drep(i, n - d)(*this)[i + d] -= (*this)[i];
else
drep(i, n - d)(*this)[i + d] += (*this)[i] * c;
}
// O(n)
void divide_inplace(const int d, const T c) {
int n = this->size();
if (c == T(1))
rep(i, n - d)(*this)[i + d] -= (*this)[i];
else if (c == T(-1))
rep(i, n - d)(*this)[i + d] += (*this)[i];
else
rep(i, n - d)(*this)[i + d] -= (*this)[i] * c;
}
// O(n)
T eval(const T &a) const {
T x(1), res(0);
for (auto e : *this) res += e * x, x *= a;
return res;
}
// O(n)
F &integral_inplace() {
int n = this->size();
assert(n > 0);
if (n == 1) return *this = F{0};
this->insert(this->begin(), 0);
this->pop_back();
vector<T> inv(n);
inv[1] = 1;
int p = T::mod();
rep(i, 2, n) inv[i] = -inv[p % i] * (p / i);
rep(i, 2, n)(*this)[i] *= inv[i];
return *this;
}
F integral() const { return F(*this).integral_inplace(); }
// O(n)
F &derivative_inplace() {
int n = this->size();
assert(n > 0);
rep(i, 2, n)(*this)[i] *= i;
this->erase(this->begin());
this->push_back(0);
return *this;
}
F derivative() const { return F(*this).derivative_inplace(); }
// O(n log n)
F &log_inplace(int d = -1) {
int n = this->size();
assert(n > 0 && (*this)[0] == 1);
if (d == -1) d = n;
assert(d >= 0);
if (d < n) this->resize(d);
F f_inv = this->inv();
this->derivative_inplace();
this->multiply_inplace(f_inv);
this->integral_inplace();
return *this;
}
F log(const int d = -1) const { return F(*this).log_inplace(d); }
// O(n log n)
// https://arxiv.org/abs/1301.5804 (Figure 1, right)
F &exp_inplace(int d = -1) {
int n = this->size();
assert(n > 0 && (*this)[0] == 0);
if (d == -1) d = n;
assert(d >= 0);
F g{1}, g_fft{1, 1};
(*this)[0] = 1;
this->resize(d);
F h_drv(this->derivative());
for (int m = 2; m < d; m *= 2) {
// prepare
F f_fft(this->begin(), this->begin() + m);
f_fft.resize(2 * m), internal::butterfly(f_fft);
// Step 2.a'
{
F _g(m);
rep(i, m) _g[i] = f_fft[i] * g_fft[i];
internal::butterfly_inv(_g);
_g.erase(_g.begin(), _g.begin() + m / 2);
_g.resize(m), internal::butterfly(_g);
rep(i, m) _g[i] *= g_fft[i];
internal::butterfly_inv(_g);
_g.resize(m / 2);
_g /= T(-m) * m;
g.insert(g.end(), _g.begin(), _g.begin() + m / 2);
}
// Step 2.b'--d'
F t(this->begin(), this->begin() + m);
t.derivative_inplace();
{
// Step 2.b'
F r{h_drv.begin(), h_drv.begin() + m - 1};
// Step 2.c'
r.resize(m);
internal::butterfly(r);
rep(i, m) r[i] *= f_fft[i];
internal::butterfly_inv(r);
r /= -m;
// Step 2.d'
t += r;
t.insert(t.begin(), t.back());
t.pop_back();
}
// Step 2.e'
if (2 * m < d) {
t.resize(2 * m);
internal::butterfly(t);
g_fft = g;
g_fft.resize(2 * m);
internal::butterfly(g_fft);
rep(i, 2 * m) t[i] *= g_fft[i];
internal::butterfly_inv(t);
t.resize(m);
t /= 2 * m;
} else { // この場合分けをしても数パーセントしか速くならない
F g1(g.begin() + m / 2, g.end());
F s1(t.begin() + m / 2, t.end());
t.resize(m / 2);
g1.resize(m), internal::butterfly(g1);
t.resize(m), internal::butterfly(t);
s1.resize(m), internal::butterfly(s1);
rep(i, m) s1[i] = g_fft[i] * s1[i] + g1[i] * t[i];
rep(i, m) t[i] *= g_fft[i];
internal::butterfly_inv(t);
internal::butterfly_inv(s1);
rep(i, m / 2) t[i + m / 2] += s1[i];
t /= m;
}
// Step 2.f'
F v(this->begin() + m, this->begin() + min<int>(d, 2 * m));
v.resize(m);
t.insert(t.begin(), m - 1, 0);
t.push_back(0);
t.integral_inplace();
rep(i, m) v[i] -= t[m + i];
// Step 2.g'
v.resize(2 * m);
internal::butterfly(v);
rep(i, 2 * m) v[i] *= f_fft[i];
internal::butterfly_inv(v);
v.resize(m);
v /= 2 * m;
// Step 2.h'
rep(i, min(d - m, m))(*this)[m + i] = v[i];
}
return *this;
}
F exp(const int d = -1) const { return F(*this).exp_inplace(d); }
// O(n log n)
F &pow_inplace(const ll k, int d = -1) {
int n = this->size();
if (d == -1) d = n;
assert(d >= 0 && k >= 0);
if (d == 0) return *this = F(0);
if (k == 0) {
*this = F(d);
(*this)[0] = 1;
return *this;
}
int l = 0;
while (l < n && (*this)[l] == 0) ++l;
if (l == n || l > (d - 1) / k) return *this = F(d);
T c{(*this)[l]};
this->erase(this->begin(), this->begin() + l);
*this /= c;
this->log_inplace(d - l * k);
*this *= k;
this->exp_inplace();
*this *= c.pow(k);
this->insert(this->begin(), l * k, 0);
return *this;
}
F pow(const ll k, const int d = -1) const {
return F(*this).pow_inplace(k, d);
}
// O(n log n)
F &shift_inplace(const T c) {
int n = this->size();
fc = Factorial<T>(n);
rep(i, n)(*this)[i] *= fc.fac[i];
reverse(this->begin(), this->end());
F g(n);
T cp = 1;
rep(i, n) g[i] = cp * fc.finv[i], cp *= c;
this->multiply_inplace(g, n);
reverse(this->begin(), this->end());
rep(i, n)(*this)[i] *= fc.finv[i];
return *this;
}
F shift(const T c) const { return F(*this).shift_inplace(c); }
F operator*(const T &g) const { return F(*this) *= g; }
F operator/(const T &g) const { return F(*this) /= g; }
F operator+(const F &g) const { return F(*this) += g; }
F operator-(const F &g) const { return F(*this) -= g; }
F operator<<(const int d) const { return F(*this) <<= d; }
F operator>>(const int d) const { return F(*this) >>= d; }
};
using fps = FormalPowerSeries<mint>;
// https://judge.yosupo.jp/problem/inv_of_formal_power_series
void yosupo_inv() {
int n;
cin >> n;
fps a(n);
cin >> a;
cout << a.inv() << '\n';
}
// https://judge.yosupo.jp/problem/log_of_formal_power_series
void yosupo_log() {
int n;
cin >> n;
fps a(n);
cin >> a;
cout << a.log_inplace() << '\n';
}
// https://judge.yosupo.jp/problem/exp_of_formal_power_series
void yosupo_exp() {
int n;
cin >> n;
fps a(n);
cin >> a;
cout << a.exp_inplace() << '\n';
}
// https://judge.yosupo.jp/problem/pow_of_formal_power_series
void yosupo_pow() {
int n, m;
cin >> n >> m;
fps a(n);
cin >> a;
cout << a.pow_inplace(m) << '\n';
}
// https://judge.yosupo.jp/problem/polynomial_taylor_shift
void yosupo_shift() {
int n, c;
cin >> n >> c;
fps a(n);
cin >> a;
cout << a.shift_inplace(c) << '\n';
}
// https://judge.yosupo.jp/problem/bernoulli_number
void yosupo_bernoulli() {
int n;
cin >> n;
++n;
fc = Factorial<mint>(n);
fps f((fc.finv).begin() + 1, (fc.finv).end());
f = f.inv();
rep(i, n) f[i] *= fc.fac[i];
cout << f << '\n';
}
// https://judge.yosupo.jp/problem/sharp_p_subset_sum
void yosupo_count_subset_sum() {
int n, t;
cin >> n >> t;
++t;
vector<int> c(t);
rep(i, n) {
int s;
cin >> s;
++c[s];
}
vector<mint> inv(t);
inv[1] = 1;
int p = mint::mod();
rep(i, 2, t) inv[i] = -inv[p % i] * (p / i);
fps f(t);
rep(i, t) {
if (c[i] == 0) continue;
for (int j = 1, d = i; d < t; ++j, d += i) {
if (j & 1)
f[d] += c[i] * inv[j];
else
f[d] -= c[i] * inv[j];
}
}
f.exp_inplace();
f.erase(f.begin());
cout << f << '\n';
}
template <class T>
struct bostan_mori {
vector<T> p, q;
bostan_mori(vector<T> a, vector<T> c) : p(move(a)), q(move(c)) {
assert(p.size() == q.size());
int d = q.size();
q.resize(d + 1);
drep(i, d) q[i + 1] = -q[i];
q[0] = 1;
p = convolution(move(p), q);
p.resize(d);
}
void rev(vector<T> &f) const {
int d = f.size();
rep(i, d) if (i & 1) f[i] = -f[i];
}
void even(vector<T> &f) const {
int d = (f.size() + 1) >> 1;
rep(i, d) f[i] = f[i << 1];
f.resize(d);
}
void odd(vector<T> &f) const {
int d = f.size() >> 1;
rep(i, d) f[i] = f[i << 1 | 1];
f.resize(d);
}
T operator[](ll n) const {
vector<T> _p(p), _q(q), _q_rev(q);
rev(_q_rev);
for (; n; n >>= 1) {
_p = convolution(move(_p), _q_rev);
if (n & 1)
odd(_p);
else
even(_p);
_q = convolution(move(_q), move(_q_rev));
even(_q);
_q_rev = _q;
rev(_q_rev);
}
return _p[0] / _q[0];
}
};
int main() {
int n, m;
scanf("%d%d", &n, &m);
if (n > m) swap(n, m);
fps a(2 * n + 3), b(2 * n + 3), c(n + 4), d = {1, 1, 1};
a[0] = 1;
a[1] = 2;
b[1] = 1;
b[2] = -mint(1);
a = a.pow(n + 1) - b.pow(n + 1);
c[0] = 1;
c[1] = -mint(1);
c = c.pow(n + 1).multiply(d);
// cout << a << endl;
// cout << c << endl;
a = a.divide(c);
c >>= 1;
c *= -mint(1);
c.resize(a.size());
bostan_mori bm(a, c);
printf("%u\n", bm[m].val());
}
Ricky_pon